Leveraging computer vision for predicting collision risks: a cross-sectional analysis of 2019–2021 fatal collisions in the USA

Author:

Nguyen Quynh C.ORCID,Alirezaei Mitra,Yue Xiaohe,Mane Heran,Li Dapeng,Zhao Lingjun,Nguyen Thu T,Patel Rithik,Yu WeijunORCID,Hu MingORCID,Quistberg D. AlexORCID,Tasdizen Tolga

Abstract

ObjectiveThe USA has higher rates of fatal motor vehicle collisions than most high-income countries. Previous studies examining the role of the built environment were generally limited to small geographic areas or single cities. This study aims to quantify associations between built environment characteristics and traffic collisions in the USA.MethodsBuilt environment characteristics were derived from Google Street View images and summarised at the census tract level. Fatal traffic collisions were obtained from the 2019–2021 Fatality Analysis Reporting System. Fatal and non-fatal traffic collisions in Washington DC were obtained from the District Department of Transportation. Adjusted Poisson regression models examined whether built environment characteristics are related to motor vehicle collisions in the USA, controlling for census tract sociodemographic characteristics.ResultsCensus tracts in the highest tertile of sidewalks, single-lane roads, streetlights and street greenness had 70%, 50%, 30% and 26% fewer fatal vehicle collisions compared with those in the lowest tertile. Street greenness and single-lane roads were associated with 37% and 38% fewer pedestrian-involved and cyclist-involved fatal collisions. Analyses with fatal and non-fatal collisions in Washington DC found streetlights and stop signs were associated with fewer pedestrians and cyclists-involved vehicle collisions while road construction had an adverse association.ConclusionThis study demonstrates the utility of using data algorithms that can automatically analyse street segments to create indicators of the built environment to enhance understanding of large-scale patterns and inform interventions to decrease road traffic injuries and fatalities.

Funder

U.S. National Library of Medicine

National Institute on Minority Health and Health Disparities

Publisher

BMJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3