Understanding the circumstances of paediatric fall injuries: a machine learning analysis of NEISS narratives

Author:

Omaki EliseORCID,Shields Wendy,Rouhizadeh Masoud,Delgado-Barroso Pamela,Stefanos Ruth,Gielen Andrea

Abstract

ObjectivesFalls are the leading cause of non-fatal injury among young children. The aim of this study was to identify and quantify the circumstances contributing to medically attended paediatric fall injuries among 0–4 years old.MethodsCross-sectional data for falls among kids under 5 years recorded between 2012 and 2016 in the National Electronic Injury Surveillance System was obtained. A sample of 4546 narratives was manually coded for: (1) where the child fell from; (2) what the child fell onto; (3) the activities preceding the fall and (4) how the fall occurred. A natural language processing model was developed and subsequently applied to the remaining uncoded data to yield a set of 91 325 cases coded for what the child fell from, fell onto, the activities preceding the fall, and how the fall occurred. Data were descriptively tabulated by age and disposition.ResultsChildren most often fell from the bed accounting for one-third (33%) of fall injuries in infants, 13% in toddlers and 12% in preschoolers. Children were more likely to be hospitalised if they fell from another person (7.4% vs 2.6% for all other sources; p<0.01). After adjusting for age, the odds of a child being hospitalised following a fall from another person were 2.1 times higher than falling from other surfaces (95% CI 1.6 to 2.7).ConclusionsThe prevalence of injuries due to falling off the bed, and the elevated risk of serious injury from falling from another person highlights the need for more robust and effective communication to caregivers on fall injury prevention.

Funder

Eunice Kennedy Shriver National Institute of Child Health and Human Development

American Public Health Association

Publisher

BMJ

Subject

Public Health, Environmental and Occupational Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. What Is the Epidemiology of Cervical and Thoracic Spine Fractures?;Clinical Orthopaedics & Related Research;2024-07-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3