Use of natural language processing method to identify regional anesthesia from clinical notes

Author:

Graham Laura AORCID,Illarmo Samantha S,Wren Sherry M,Odden Michelle C,Mudumbai Seshadri CORCID

Abstract

IntroductionAccurate data capture is integral for research and quality improvement efforts. Unfortunately, limited guidance for defining and documenting regional anesthesia has resulted in wide variation in documentation practices, even within individual hospitals, which can lead to missing and inaccurate data. This cross-sectional study sought to evaluate the performance of a natural language processing (NLP)-based algorithm developed to identify regional anesthesia within unstructured clinical notes.MethodsWe obtained postoperative clinical notes for all patients undergoing elective non-cardiac surgery with general anesthesia at one of six Veterans Health Administration hospitals in California between January 1, 2017, and December 31, 2022. After developing and executing our algorithm, we compared our results to a frequently used referent, the Corporate Data Warehouse structured data, to assess the completeness and accuracy of the currently available data. Measures of agreement included sensitivity, positive predictive value, false negative rate, and accuracy.ResultsWe identified 27,713 procedures, of which 9310 (33.6%) received regional anesthesia. 96.6% of all referent regional anesthesia cases were identified in the clinic notes with a very low false negative rate and good accuracy (false negative rate=0.8%, accuracy=82.5%). Surprisingly, the clinic notes documented more than two times the number of regional anesthesia cases that were documented in the referent (algorithm n=9154 vs referent n=4606).DiscussionWhile our algorithm identified nearly all regional anesthesia cases from the referent, it also identified more than two times as many regional anesthesia cases as the referent, raising concerns about the accuracy and completeness of regional anesthesia documentation in administrative and clinical databases. We found that NLP was a promising alternative for identifying clinical information when existing databases lack complete documentation.

Funder

Veterans Integrated Services Network Early Career Award Program

Publisher

BMJ

Reference13 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3