Metabolomics of World Trade Center-Lung Injury: a machine learning approach

Author:

Crowley George,Kwon Sophia,Haider Syed Hissam,Caraher Erin J,Lam Rachel,St-Jules David E,Liu Mengling,Prezant David J,Nolan AnnaORCID

Abstract

IntroductionBiomarkers of metabolic syndrome expressed soon after World Trade Center (WTC) exposure predict development of WTC Lung Injury (WTC-LI). The metabolome remains an untapped resource with potential to comprehensively characterise many aspects of WTC-LI. This case–control study identified a clinically relevant, robust subset of metabolic contributors of WTC-LI through comprehensive high-dimensional metabolic profiling and integration of machine learning techniques.MethodsNever-smoking, male, WTC-exposed firefighters with normal pre-9/11 lung function were segregated by post-9/11 lung function. Cases of WTC-LI (forced expiratory volume in 1s <lower limit of normal, n=15) and controls (n=15) were identified from previous cohorts. The metabolome of serum drawn within 6 months of 9/11 was quantified. Machine learning was used for dimension reduction to identify metabolites associated with WTC-LI.Results580 metabolites qualified for random forests (RF) analysis to identify a refined metabolite profile that yielded maximal class separation. RF of the refined profile correctly classified subjects with a 93.3% estimated success rate. 5 clusters of metabolites emerged within the refined profile. Prominent subpathways include known mediators of lung disease such as sphingolipids (elevated in cases of WTC-LI), and branched-chain amino acids (reduced in cases of WTC-LI). Principal component analysis of the refined profile explained 68.3% of variance in five components, demonstrating class separation.ConclusionAnalysis of the metabolome of WTC-exposed 9/11 rescue workers has identified biologically plausible pathways associated with loss of lung function. Since metabolites are proximal markers of disease processes, metabolites could capture the complexity of past exposures and better inform treatment. These pathways warrant further mechanistic research.

Funder

National Center for Advancing Translational Sciences

National Heart, Lung, and Blood Institute

Saperstein Scholars Fund

National Institute for Occupational Safety and Health

Publisher

BMJ

Subject

Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3