Reducing carbon footprint of inhalers: analysis of climate and clinical implications of different scenarios in five European countries

Author:

Pernigotti Daniele,Stonham Carol,Panigone Sara,Sandri Federica,Ferri Rossella,Unal Yasemin,Roche Nicolas

Abstract

BackgroundInhaled therapies are key components of asthma and chronic obstructive pulmonary disease (COPD) treatments. Although the use of pressurised metered-dose inhalers (pMDIs) accounts for <0.1% of global greenhouse gas emissions, their contribution to global warming has been debated and efforts are underway to reduce the carbon footprint of pMDIs. Our aim was to establish the extent to which different scenarios led to reductions in greenhouse gas emissions associated with inhaler use, and their clinical implications.MethodsWe conducted a series of scenario analyses using asthma and COPD inhaler usage data from 2019 to model carbon dioxide equivalent (CO2e) emissions reductions over a 10-year period (2020–2030) in the UK, Italy, France, Germany and Spain: switching propellant-driven pMDIs for propellant-free dry-powder inhalers (DPIs)/soft mist inhalers (SMIs); transitioning to low global warming potential (GWP) propellant (hydrofluoroalkane (HFA)-152a) pMDIs; reducing short-acting β2-agonist (SABA) use; and inhaler recycling.ResultsTransition to low-GWP pMDIs and forced switching to DPI/SMIs (excluding SABA inhalers) would reduce annual CO2e emissions by 68%–84% and 64%–71%, respectively, but with different clinical implications. Emission reductions would be greatest (82%–89%) with transition of both maintenance and SABA inhalers to low-GWP propellant. Only minimising SABA inhaler use would reduce CO2e emissions by 17%–48%. Although significant greenhouse gas emission reductions would be achieved with high rates of end-of-life recycling (81%–87% of the inhalers), transition to a low-GWP propellant would still result in greater reductions.ConclusionsWhile the absolute contribution of pMDIs to global warming is very small, substantial reductions in the carbon footprint of pMDIs can be achieved with transition to low-GWP propellant (HFA-152a) inhalers. This approach outperforms the substitution of pMDIs with DPI/SMIs while preserving patient access and choice, which are essential for optimising treatment and outcomes. These findings require confirmation in independent studies.

Funder

Chiesi Farmaceutici

Publisher

BMJ

Subject

Pulmonary and Respiratory Medicine

Reference40 articles.

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3