Author:
Pernigotti Daniele,Stonham Carol,Panigone Sara,Sandri Federica,Ferri Rossella,Unal Yasemin,Roche Nicolas
Abstract
BackgroundInhaled therapies are key components of asthma and chronic obstructive pulmonary disease (COPD) treatments. Although the use of pressurised metered-dose inhalers (pMDIs) accounts for <0.1% of global greenhouse gas emissions, their contribution to global warming has been debated and efforts are underway to reduce the carbon footprint of pMDIs. Our aim was to establish the extent to which different scenarios led to reductions in greenhouse gas emissions associated with inhaler use, and their clinical implications.MethodsWe conducted a series of scenario analyses using asthma and COPD inhaler usage data from 2019 to model carbon dioxide equivalent (CO2e) emissions reductions over a 10-year period (2020–2030) in the UK, Italy, France, Germany and Spain: switching propellant-driven pMDIs for propellant-free dry-powder inhalers (DPIs)/soft mist inhalers (SMIs); transitioning to low global warming potential (GWP) propellant (hydrofluoroalkane (HFA)-152a) pMDIs; reducing short-acting β2-agonist (SABA) use; and inhaler recycling.ResultsTransition to low-GWP pMDIs and forced switching to DPI/SMIs (excluding SABA inhalers) would reduce annual CO2e emissions by 68%–84% and 64%–71%, respectively, but with different clinical implications. Emission reductions would be greatest (82%–89%) with transition of both maintenance and SABA inhalers to low-GWP propellant. Only minimising SABA inhaler use would reduce CO2e emissions by 17%–48%. Although significant greenhouse gas emission reductions would be achieved with high rates of end-of-life recycling (81%–87% of the inhalers), transition to a low-GWP propellant would still result in greater reductions.ConclusionsWhile the absolute contribution of pMDIs to global warming is very small, substantial reductions in the carbon footprint of pMDIs can be achieved with transition to low-GWP propellant (HFA-152a) inhalers. This approach outperforms the substitution of pMDIs with DPI/SMIs while preserving patient access and choice, which are essential for optimising treatment and outcomes. These findings require confirmation in independent studies.
Subject
Pulmonary and Respiratory Medicine
Reference40 articles.
1. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990-2015: a systematic analysis for the global burden of disease study 2015;Lancet Respir Med,2017
2. Global Initiative for Asthma (GINA) . Global strategy for asthma management and prevention, 2020. Available: https://ginasthma.org/wp-content/uploads/2020/04/GINA-2020-full-report_-final-_wms.pdf [Accessed 19 Jul 2021].
3. An Official American Thoracic Society Public Policy Statement: Novel Risk Factors and the Global Burden of Chronic Obstructive Pulmonary Disease
4. Choosing the right inhaler for your asthma or COPD patient;Usmani;Ther Clin Risk Manag,2019
5. Our planet or our patients-is the sky the limit for inhaler choice?;Usmani;Lancet Respir Med,2019
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献