Abstract
ObjectiveTracheobronchial tuberculosis (TBTB), a specific subtype of pulmonary tuberculosis (PTB), can lead to bronchial stenosis or bronchial occlusion if not identified early. However, there is currently no available means for predicting the risk of associated TBTB in PTB patients. The objective of this study was to establish a risk prediction nomogram model for estimating the associated TBTB risk in every PTB patient.MethodsA retrospective cohort study was conducted with 2153 PTB patients. Optimised characteristics were selected using least absolute shrinkage and selection operator regression. Multivariate logistic regression was applied to build a predictive nomogram model. Discrimination, calibration and clinical usefulness of the prediction model were assessed using C-statistics, receiver operator characteristic curves, calibration plots and decision analysis. The developed model was validated both internally and externally.ResultsAmong all PTB patients who underwent bronchoscopies (n=2153), 40.36% (n=869) were diagnosed with TBTB. A nomogram model incorporating 11 predictors was developed and displayed good discrimination with a C-statistics of 0.782, a sensitivity of 0.661 and a specificity of 0.762 and good calibration with a calibration-in-the-large of 0.052 and a calibration slope of 0.957. Model’s discrimination was favourable in both internal (C-statistics, 0.782) and external (C-statistics, 0.806) validation. External validation showed satisfactory accuracy (sensitivity, 0.690; specificity, 0.804) in independent cohort. Decision curve analysis showed that the model was clinically useful when intervention was decided on at the exacerbation possibility threshold of 2.3%–99.2%. A clinical impact curve demonstrated that our model predicted high-risk estimates and true positives.ConclusionWe developed a novel and convenient risk prediction nomogram model that enhances the risk assessment of associated TBTB in PTB patients. This nomogram can help identify high-risk PTB patients who may benefit from early bronchoscopy and aggressive treatment to prevent disease progression.
Funder
Joint Scientific Research Foundation
Chongqing Natural Science Foundation, China
Chongqing Municipal Bureau of Science & Technology, China
Innovation Fund of Chongqing Public Health Medical Center, China
Subject
Pulmonary and Respiratory Medicine