Developing and validating prediction models for severe exacerbations and readmissions in patients hospitalised for COPD exacerbation (SERCO) in China: a prospective observational study

Author:

Wang YeORCID,He RuoxiORCID,Ren Xiaoxia,Huang Ke,Lei Jieping,Niu Hongtao,Li Wei,Dong Fen,Li Baicun,Yang Ting,Wang Chen

Abstract

BackgroundThere is a lack of individualised prediction models for patients hospitalised with chronic obstructive pulmonary disease (COPD) for clinical practice. We developed and validated prediction models of severe exacerbations and readmissions in patients hospitalised for COPD exacerbation (SERCO).MethodsData were obtained from the Acute Exacerbations of Chronic Obstructive Pulmonary Disease Inpatient Registry study (NCT02657525) in China. Cause-specific hazard models were used to estimate coefficients. C-statistic was used to evaluate the discrimination. Slope and intercept were used to evaluate the calibration and used for model adjustment. Models were validated internally by 10-fold cross-validation and externally using data from different regions. Risk-stratified scoring scales and nomograms were provided. The discrimination ability of the SERCO model was compared with the exacerbation history in the previous year.ResultsTwo sets with 2196 and 1869 patients from different geographical regions were used for model development and external validation. The 12-month severe exacerbations cumulative incidence rates were 11.55% (95% CI 10.06% to 13.16%) in development cohorts and 12.30% (95% CI 10.67% to 14.05%) in validation cohorts. The COPD-specific readmission incidence rates were 11.31% (95% CI 9.83% to 12.91%) and 12.26% (95% CI 10.63% to 14.02%), respectively. Demographic characteristics, medical history, comorbidities, drug usage, Global Initiative for Chronic Obstructive Lung Disease stage and interactions were included as predictors. C-indexes for severe exacerbations were 77.3 (95% CI 70.7 to 83.9), 76.5 (95% CI 72.6 to 80.4) and 74.7 (95% CI 71.2 to 78.2) at 1, 6 and 12 months. The corresponding values for readmissions were 77.1 (95% CI 70.1 to 84.0), 76.3 (95% CI 72.3 to 80.4) and 74.5 (95% CI 71.0 to 78.0). The SERCO model was consistently discriminative and accurate with C-indexes in the derivation and internal validation groups. In external validation, the C-indexes were relatively lower at 60–70 levels. The SERCO model discriminated outcomes better than prior severe exacerbation history. The slope and intercept after adjustment showed close agreement between predicted and observed risks. However, in external validation, the models may overestimate the risk in higher-risk groups. The model-driven risk groups showed significant disparities in prognosis.ConclusionThe SERCO model provides individual predictions for severe exacerbation and COPD-specific readmission risk, which enables identifying high-risk patients and implementing personalised preventive intervention for patients with COPD.

Funder

CAMS Innovation Fund for Medical Sciences

Publisher

BMJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3