Deep learning with test-time augmentation for radial endobronchial ultrasound image differentiation: a multicentre verification study

Author:

Yu Kai-Lun,Tseng Yi-Shiuan,Yang Han-Ching,Liu Chia-Jung,Kuo Po-Chih,Lee Meng-Rui,Huang Chun-Ta,Kuo Lu-Cheng,Wang Jann-Yuan,Ho Chao-Chi,Shih Jin-Yuan,Yu Chong-Jen

Abstract

PurposeDespite the importance of radial endobronchial ultrasound (rEBUS) in transbronchial biopsy, researchers have yet to apply artificial intelligence to the analysis of rEBUS images.Materials and methodsThis study developed a convolutional neural network (CNN) to differentiate between malignant and benign tumours in rEBUS images. This study retrospectively collected rEBUS images from medical centres in Taiwan, including 769 from National Taiwan University Hospital Hsin-Chu Branch, Hsinchu Hospital for model training (615 images) and internal validation (154 images) as well as 300 from National Taiwan University Hospital (NTUH-TPE) and 92 images were obtained from National Taiwan University Hospital Hsin-Chu Branch, Biomedical Park Hospital (NTUH-BIO) for external validation. Further assessments of the model were performed using image augmentation in the training phase and test-time augmentation (TTA).ResultsUsing the internal validation dataset, the results were as follows: area under the curve (AUC) (0.88 (95% CI 0.83 to 0.92)), sensitivity (0.80 (95% CI 0.73 to 0.88)), specificity (0.75 (95% CI 0.66 to 0.83)). Using the NTUH-TPE external validation dataset, the results were as follows: AUC (0.76 (95% CI 0.71 to 0.80)), sensitivity (0.58 (95% CI 0.50 to 0.65)), specificity (0.92 (95% CI 0.88 to 0.97)). Using the NTUH-BIO external validation dataset, the results were as follows: AUC (0.72 (95% CI 0.64 to 0.82)), sensitivity (0.71 (95% CI 0.55 to 0.86)), specificity (0.76 (95% CI 0.64 to 0.87)). After fine-tuning, the AUC values for the external validation cohorts were as follows: NTUH-TPE (0.78) and NTUH-BIO (0.82). Our findings also demonstrated the feasibility of the model in differentiating between lung cancer subtypes, as indicated by the following AUC values: adenocarcinoma (0.70; 95% CI 0.64 to 0.76), squamous cell carcinoma (0.64; 95% CI 0.54 to 0.74) and small cell lung cancer (0.52; 95% CI 0.32 to 0.72).ConclusionsOur results demonstrate the feasibility of the proposed CNN-based algorithm in differentiating between malignant and benign lesions in rEBUS images.

Funder

National Tsing Hua University

National Taiwan University Hospital Hsin-Chu Branch

Publisher

BMJ

Subject

Pulmonary and Respiratory Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3