Uncovering potential distinctive acoustic features of healing music

Author:

Ding YueORCID,Jing Jiaqi,Guo Qihui,Zhou Jiajia,Cheng Xinyao,Chen Xiaoya,Wang Lihui,Tang Yingying,Fan Qing

Abstract

BackgroundMusic therapy is a promising complementary intervention for addressing various mental health conditions. Despite evidence of the beneficial effects of music, the acoustic features that make music effective in therapeutic contexts remain elusive.AimsThis study aimed to identify and validate distinctive acoustic features of healing music.MethodsWe constructed a healing music dataset (HMD) based on nominations from related professionals and extracted 370 acoustic features. Healing-distinctive acoustic features were identified as those that were (1) independent from genre within the HMD, (2) significantly different from music pieces in a classical music dataset (CMD) and (3) similar to pieces in a five-element music dataset (FEMD). We validated the identified features by comparing jazz pieces in the HMD with a jazz music dataset (JMD). We also examined the emotional properties of the features in a Chinese affective music system (CAMS).ResultsThe HMD comprised 165 pieces. Among all the acoustic features, 74.59% shared commonalities across genres, and 26.22% significantly differed between the HMD classical pieces and the CMD. The equivalence test showed that the HMD and FEMD did not differ significantly in 9.46% of the features. The potential healing-distinctive acoustic features were identified as the standard deviation of the roughness, mean and period entropy of the third coefficient of the mel-frequency cepstral coefficients. In a three-dimensional space defined by these features, HMD’s jazz pieces could be distinguished from those of the JMD. These three features could significantly predict both subjective valence and arousal ratings in the CAMS.ConclusionsThe distinctive acoustic features of healing music that have been identified and validated in this study have implications for the development of artificial intelligence models for identifying therapeutic music, particularly in contexts where access to professional expertise may be limited. This study contributes to the growing body of research exploring the potential of digital technologies for healthcare interventions.

Funder

Key Laboratory of Psychotic Disorders

Qihang Program of Shanghai Mental Health Center

Hospital Program of Shanghai Mental Health Center

Academic Leader of Health Discipline of Shanghai Municipal Health Commission

National Natural Science Foundation of China

Shanghai Sailing Program

Publisher

BMJ

Subject

Psychiatry and Mental health,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3