Practical prediction model for the risk of 2-year mortality of individuals in the general population

Author:

Goldfarb-Rumyantzev Alexander,Gautam Shiva,Brown Robert S

Abstract

This study proposed to validate a prediction model and risk-stratification tool of 2-year mortality rates of individuals in the general population suitable for office practice use. A risk indicator (R) derived from data in the literature was based on only 6 variables: to calculate R for an individual, starting with 0, for each year of age above 60, add 0.14; for a male, add 0.9; for diabetes mellitus, add 0.7; for albuminuria >30 mg/g of creatinine, add 0.7; for stage ≥3 chronic kidney disease (CKD), add 0.9; for cardiovascular disease (CVD), add 1.4; or for both CKD and CVD, add 1.7. We developed a univariate logistic regression model predicting 2-year individual mortality rates. The National Health and Nutrition Examination Survey (NHANES) data set (1999–2004 with deaths through 2006) was used as the target for validation. These 12,515 subjects had a mean age of 48.9±18.1 years, 48% males, 9.5% diabetes, 11.7% albuminuria, 6.8% CVD, 5.4% CKD, and 2.8% both CKD and CVD. Using the risk indicator R alone to predict mortality demonstrated good performance with area under the receiver operating characteristic (ROC) curve of 0.84. Dividing subjects into low-risk (R=0–1.0), low intermediate risk (R>1.0–3.0), high intermediate risk (R>3.0–5.0) or high-risk (R>5.0) categories predicted 2-year mortality rates of 0.52%, 1.44%, 5.19% and 15.24%, respectively, by the prediction model compared with actual mortality rates of 0.29%, 2.48%, 5.13% and 13.40%, respectively. We have validated a model of risk stratification using easily identified clinical characteristics to predict 2-year mortality rates of individuals in the general population. The model demonstrated performance adequate for its potential use for clinical practice and research decisions.

Publisher

BMJ

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3