Preconditioning Strategies to Limit Graft Immunogenicity and Cold Ischemic Organ Injury

Author:

van der Woude Fokko J.,Schnuelle Peter,Yard Benito A.

Abstract

During the transplant process, the graft is exposed to numerous events, which may enhance its immunogenicity. In particular, factors related to brain death, such as hemodynamic instability and systemic release of cytokines, cold preservation on harvesting, and reperfusion injury, are known to accumulate in harm, conveying a proinflammatory state to the graft before transplant. Alloimmune reactivity is initiated when the host immune system detects non-self-antigens in the context of “danger signals.” Eliminating these danger signals by modifying the graft before transplant has the potential to attenuate the alloimmune response. The molecules, which mediate danger signals, have not yet been fully identified. Free oxygen radicals and interferon-γ are important candidates. One of the most important protective mechanisms against oxidative stress is the heme oxygenase 1 system. Up-regulation of heme oxygenase 1 in grafts has been shown to prevent ischemia-reperfusion damage and improve long-term graft survival in various transplant models. The benefit of blocking the action of interferon-γ in kidney transplants is less clear because the compound plays such a complex and pivotal role in the immune response, and experimental data with interferon-γ receptor knockout mice are conflicting. It has recently become clear that catecholamines are important graft-modifying agents. Dopamine is capable of stimulating the induction of protective enzymes like heme oxygenase-1 (HO-1) rendering the organ more resistant to the insult of ischemia/reperfusion and inflammation. Retrospective clinical data suggest that treatment of brain-dead organ donors with catecholamines is associated with less rejection and a better long-term graft survival of kidneys transplanted from these donors. Catecholamines can also modulate cytokine production and prevent cold-induced damage. Other substances, such as proteoglycans and phosphatidylethanolamine-bound hyaluronic acid, may interfere with the actions of interferon-γ. Further studies of these compounds in experimental animal models and in prospective randomized clinical trials will help establish their efficacy in donor pretreatment. It is important to underscore that donor pretreatment will have great advantages for the recipient because an improved long-term graft survival could thus be achieved cost-efficiently and without great effort or side effects.

Publisher

BMJ

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3