Leveraging data science to enhance suicide prevention research: a literature review

Author:

Wulz Avital RachelleORCID,Law Royal,Wang Jing,Wolkin Amy Funk

Abstract

ObjectiveThe purpose of this research is to identify how data science is applied in suicide prevention literature, describe the current landscape of this literature and highlight areas where data science may be useful for future injury prevention research.DesignWe conducted a literature review of injury prevention and data science in April 2020 and January 2021 in three databases.MethodsFor the included 99 articles, we extracted the following: (1) author(s) and year; (2) title; (3) study approach (4) reason for applying data science method; (5) data science method type; (6) study description; (7) data source and (8) focus on a disproportionately affected population.ResultsResults showed the literature on data science and suicide more than doubled from 2019 to 2020, with articles with individual-level approaches more prevalent than population-level approaches. Most population-level articles applied data science methods to describe (n=10) outcomes, while most individual-level articles identified risk factors (n=27). Machine learning was the most common data science method applied in the studies (n=48). A wide array of data sources was used for suicide research, with most articles (n=45) using social media and web-based behaviour data. Eleven studies demonstrated the value of applying data science to suicide prevention literature for disproportionately affected groups.ConclusionData science techniques proved to be effective tools in describing suicidal thoughts or behaviour, identifying individual risk factors and predicting outcomes. Future research should focus on identifying how data science can be applied in other injury-related topics.

Publisher

BMJ

Subject

Public Health, Environmental and Occupational Health

Reference54 articles.

1. Centers for Disease Control and Prevention, National Center for Injury Prevention and Control . Data science and public health, 2021. Available: https://www.cdc.gov/injury/data/data-science/index.html

2. Advancing injury and violence prevention through data science;Ballesteros;J Safety Res,2020

3. Forecasting accident frequency of an urban road network: a comparison of four artificial neural network techniques;Behbahani;J Forecast,2018

4. Deep learning for freezing of gait detection in Parkinson’s disease patients in their homes using a waist-worn inertial measurement unit;Camps;Knowledge-Based Systems,2018

5. SmartFall: a smartwatch-based fall detection system using deep learning;Mauldin;Sensors,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3