IMPACT and CRASH prognostic models for traumatic brain injury: external validation in a South-American cohort

Author:

Wongchareon KwankaewORCID,Thompson Hilaire JORCID,Mitchell Pamela H,Barber Jason,Temkin Nancy

Abstract

ObjectiveTo develop a robust prognostic model, the more diverse the settings in which the system is tested and found to be accurate, the more likely it will be generalisable to untested settings. This study aimed to externally validate the International Mission for Prognosis and Clinical Trials in Traumatic Brain Injury (IMPACT) and Corticosteroid Randomization after Significant Head Injury (CRASH) models for low-income and middle-income countries using a dataset of patients with severe traumatic brain injury (TBI) from the Benchmark Evidence from South American Trials: Treatment of Intracranial Pressure study and a simultaneously conducted observational study.MethodA total of 550 patients with severe TBI were enrolled in the study, and 466 of those were included in the analysis. Patient admission characteristics were extracted to predict unfavourable outcome (Glasgow Outcome Scale: GOS<3) and mortality (GOS 1) at 14 days or 6 months.ResultsThere were 48% of the participants who had unfavourable outcome at 6 months and these included 38% who had died. The area under the receiver operating characteristic curve (AUC) values were 0.683–0.775 and 0.640–0.731 for the IMPACT and CRASH models respectively. The IMPACT CT model had the highest AUC for predicting unfavourable outcomes, and the IMPACT Lab model had the best discrimination for predicting 6-month mortality. The discrimination for both the IMPACT and CRASH models improved with increasing complexity of the models. Calibration revealed that there were disagreement between observed and predicted outcomes in the IMPACT and CRASH models.ConclusionThe overall performance of all IMPACT and CRASH models was adequate when used to predict outcomes in the dataset. However, some disagreement in calibration suggests the necessity for updating prognostic models to maintain currency and generalisability.

Publisher

BMJ

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3