Clinical and genetic features of GATOR1 complex-associated epilepsy

Author:

Yin Kaili,Lei Xingxing,Yan Zhaofen,Yang Yujiao,Deng Qinqin,Lu Qiang,Zhang Xue,Wang Mengyang,Liu QingORCID

Abstract

ObjectivesTo analyse the prevalence of pathogenic variants inDEPDC5,NPRL2andNPRL3that encode the GATOR1 (GTPase-activating protein towards the Rags 1) complex, a modulator in the mammalian target of rapamycin (mTOR) pathway, and to define the characteristics of GATOR1-associated epilepsy.MethodsClinical details and whole-exome sequencing data of 170 novel probands with lesional or non-lesional epilepsy were retrieved. Candidate variants in GATOR1 genes were verified by Sanger sequencing, and cosegregate analysis was performed. The pathogenicity of variants and their effect on mTOR signalling were investigated.ResultsTwo novel frameshift variants and one recurrent nonsense variant were detected inDEPDC5, with a prevalence of 1.8% (3 out of 170) in the whole cohort and 3.1% (3 out of 97) in focal epilepsies. These variants cosegregated in pedigrees with epilepsy, respectively. Rare missense variants inNPRL2andNPRL3did not segregate with epilepsy in families, respectively. Epileptic phenotypes of 21 patients withDEPDC5variants showed focal seizures with non-lesional variable foci that were predominantly sleep-related, with a median onset age of 10 years (range 1–30). Seizure outcome was variable. About 24% of patients were drug-resistant, and seizure attacks were absent in 33% of variant carriers. Of 13 patients who experienced seizures, 54% tended to resolve spontaneously. Functional assessments showed that the three variants affectedDEPDC5expression. These loss-of-function (LoF) variants affected theDEPDC5-dependent inhibition of mTOR.ConclusionsPatients carryingDEPDC5-LoF variants might show a high prevalence of focal seizures with a dynamic phenotype, indicating reduced penetrance and self-resolving features. The associated epilepsy was caused by loss of inhibition of the mTOR pathway. The pathogenicity of missense variants in GATOR1 genes should be cautiously evaluated.

Funder

National key Research and Development Program of China

Beijing Scientific Research Cultivation Plan for Health Development of Haidian District

CAAE

Capital Medical University Scientific Research Cultivation Fund

National Natural Science Foundation of China

Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences

Publisher

BMJ

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3