Abstract
BackgroundFirst-in-human (FIH) clinical trials require careful selection of a safe yet biologically relevant starting dose. Typically, such starting doses are selected based on toxicity studies in a pharmacologically relevant animal model. However, with the advent of target-specific and highly active immunotherapeutics, both the Food and Drug Administration and the European Medicines Agency have provided guidance that recommend determining a safe starting dose based on a minimum anticipated biological effect level (MABEL) approach.MethodsWe recently developed a T cell activating bispecific antibody that effectively treats orthotopic patient-derived malignant glioma and syngeneic glioblastoma in mice (hEGFRvIII:CD3 bi-scFv). hEGFRvIII:CD3 bi-scFv is comprized of two single chain antibody fragments (bi-scFvs) that bind mutant epidermal growth factor receptor variant III (EGFRvIII), a mutation frequently seen in malignant glioma, and human CD3ε on T cells, respectively. In order to establish a FIH dose, we used a MABEL approach to select a safe starting dose for hEGFRvIII:CD3 bi-scFv, based on a combination of in vitro data, in vivo animal studies, and theoretical human receptor occupancy modeling.ResultsUsing the most conservative approach to the MABEL assessment, a dose of 57.4 ng hEGFRvIII:CD3 bi-scFv/kg body weight was selected as a safe starting dose for a FIH clinical study.ConclusionsThe comparison of our MABEL-based starting dose to our in vivo efficacious dose and the theoretical human receptor occupancy strongly supports that our human starting dose of 57.4 ng hEGFRvIII:CD3 bi-scFv/patient kg will be safe.
Funder
National Cancer Institute
National Institute of Neurological Disorders and Stroke
Subject
Cancer Research,Pharmacology,Oncology,Molecular Medicine,Immunology,Immunology and Allergy
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献