Enhanced efficacy and limited systemic cytokine exposure with membrane-anchored interleukin-12 T-cell therapy in murine tumor models

Author:

Zhang Ling,Davies John SORCID,Serna Carylinda,Yu Zhiya,Restifo Nicholas P,Rosenberg Steven A,Morgan Richard A,Hinrichs Christian S

Abstract

BackgroundInterleukin-12 (IL-12) is a potent, proinflammatory cytokine that holds promise for cancer immunotherapy, but its clinical use has been limited by its toxicity. To minimize systemic exposure and potential toxicity while maintaining the beneficial effects of IL-12, we developed a novel IL-12-based therapeutic system that combines tumor-specific T-cell-mediated delivery of IL-12 with membrane-restricted IL-12 localization and inducible IL-12 expression.MethodsTherapeutic T cells targeting a tumor antigen were genetically engineered to express membrane-anchored IL-12 (aIL-12). Expression, function, and shedding of the aIL-12 molecule was assessed in vitro. Tumor treatment efficacy was assessed in vivo with T cell receptor (TCR) transgenic murine tumor models and a tumor xenograft model. Key outcomes were change in tumor size, circulating levels of IL-12 and other cytokines, and survival. Toxicity was assessed via change in body weight. Tumor growth curve measurements were compared using repeated-measures two-way analyses of variance.ResultsRetroviral gene transfer resulted in cell membrane expression of aIL-12 by transduced T cells. In each of two transgenic murine tumor models, tumor-specific T cells constitutively expressing aIL-12 demonstrated increased antitumor efficacy, low circulating IL-12 and interferon-γ, and no weight loss. Expression of aIL-12 via aNFAT-inducible promoter resulted in coordinate expression of aIL-12 with T cell activation. In an OT-I TCR transgenic murine tumor model, theNFAT-inducible aIL-12 molecule improved tumor treatment and did not result in detectable levels of IL-12 in serum or in weight loss. In a human tumor xenograft model, theNFAT-inducible aIL-12 molecule improved antitumor responses by human T cells coexpressing a tumor-specific engineered TCR. Serum IL-12 levels were undetectable with theNFAT-inducible construct in both models.ConclusionExpression of aIL-12 by tumor-targeting therapeutic T cells demonstrated low systemic exposure and improved efficacy. This treatment strategy may have broad applications to cellular therapy with tumor-infiltrating lymphocytes, chimeric antigen receptor T cells, and TCR T cells.

Funder

Intramural Research Program of the National Institute of Health

Publisher

BMJ

Subject

Cancer Research,Pharmacology,Oncology,Molecular Medicine,Immunology,Immunology and Allergy

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3