Development of a job-exposure matrix (JEM) for exposure to smoke particle mass among firefighters of the Fire Department of the City of New York (FDNY)

Author:

Goldfarb David GORCID,Prezant David J,Zeig-Owens RachelORCID,Schwartz Theresa,Liu Yang,Kavouras Ilias G

Abstract

ObjectivesA refined job exposure matrix (JEM) based on incident types and severities and response characteristics was developed for firefighters to estimate quantities of smoke particles emitted during structural and non-structural fire incidents from 2010 to 2021.MethodsThe cohort included a subset of 3237 Fire Department of the City of New York firefighters who responded to at least one incident between 2010 and 2021, prior to retirement. Fire incident data included dates, type, severity (alarm level) and location. Response data included dates worked, firehouse, position titles and shift lengths for each firefighter. The quantity of smoke particle mass generated during structural and non-structural fires adjusted by individual firefighter engagement was computed using the United States Environmental Protection Agency AP-42 emissions framework. Correlations between years of employment, fire responses and career total particle mass concentration by firefighter were examined. Linear regression models were fit and corresponding R2values were calculated.ResultsFirefighters responded to a median of 424.7 (IQR=202.3–620.0) annual incidents/person; 17.6% were fire incidents (median=77.1; IQR=40.4–114.0). Structural fires were the most common type of fire incident (72.5% of annual incidents/person; median=55.9; IQR=29.6–85.5). Incident severity (alarm level) and firefighter engagement (position title) appeared to differentiate between high and low exposure regimes (R2=0.43). Incident severity explained most of the variability of particle exposures (R2=0.90).ConclusionsUsing the JEM, job-related smoke particle concentrations were estimated to vary by incident type, incident severity and firefighter engagement, highlighting the importance of using refined measures, so that future studies can more accurately evaluate associations between firefighting and health outcomes.

Funder

National Institute for Occupational Safety and Health

Publisher

BMJ

Subject

Public Health, Environmental and Occupational Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3