Abstract
ObjectivesJob exposure matrices (JEMs) can be constructed from expert-rated assessments, direct measurement and self-reports. This paper describes the construction of a general population JEM based on self-reported physical exposures, its ability to create homogeneous exposure groups (HEG) and the use of different exposure metrics to express job-level estimates.MethodsThe JEM was constructed from physical exposure data obtained from the Cohorte des consultants des Centres d’examens de santé (CONSTANCES). Using data from 35 526 eligible participants, the JEM consisted of 27 physical risk factors from 407 job codes. We determined whether the JEM created HEG by performing non-parametric multivariate analysis of variance (NPMANOVA). We compared three exposure metrics (mean, bias-corrected mean, median) by calculating within-job and between-job variances, and by residual plots between each metric and individual reported exposure.ResultsNPMANOVA showed significantly higher between-job than within-job variance among the 27 risk factors (F(253,21964)=61.33, p<0.0001, r2=41.1%). The bias-corrected mean produced more favourable HEG as we observed higher between-job variance and more explained variance than either means or medians. When compared with individual reported exposures, the bias-corrected mean led to near-zero mean differences and lower variance than other exposure metrics.ConclusionsCONSTANCES JEM using self-reported data yielded HEGs, and can thus classify individual participants based on job title. The bias-corrected mean metric may better reflect the shape of the underlying exposure distribution. This JEM opens new possibilities for using unbiased exposure estimates to study the effects of workplace physical exposures on a variety of health conditions within a large general population study.
Subject
Public Health, Environmental and Occupational Health
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献