ECG conduction disturbances and ryanodine receptor expression levels in occupational lead exposure workers

Author:

Xie Jie,Du Guihua,Zhang Yuanyuan,Zhou Fankun,Wu Junfang,Jiao Huan,Li Yanshu,Chen Ying,Ouyang Lu,Bo Dandan,Feng Chang,Yang Wei,Fan Guangqin

Abstract

ObjectivesA significant number of researches have evidenced that occupational lead (Pb) exposure increased risks of cardiovascular disease. However, evidences about the potential effects of Pb on the cardiac conduction system are sparse and inconclusive. Besides, ryanodine receptors (RyRs) induced dysfunction of cardiac excitation contraction coupling which is considered to be one of the mechanisms in cardiovascular diseases. Therefore, we examined the association between occupational Pb exposure and ECG conduction abnormalities, as well as RyRs in Pb-induced ECG abnormalities.MethodsWe investigated 529 Pb smelter workers, and measured blood lead (BPb), zinc protoporphyrin (ZPP), ECG outcomes and RyR expression levels. Based on BPb levels, the workers were divided into three groups: the BPb not elevated group, the BPb elevated group and the Pb poisoning group. Descriptive and multivariable analyses were performed.ResultsCompared with the BPb not elevated group, the Pb poisoning group had a higher incidence of high QRS voltage, and a lower level of RyR1 gene expression (p<0.05). Further unconditional multivariable logistic regression analyses showed that high QRS voltage was positively related to BPb (OR=1.045, 95% CI 1.014 to 1.078) and inversely associated with RyR1 expression (OR=0.042, 95% CI 0.002 to 0.980) after adjusting for potential confounders. In addition, multiple linear regression analyses showed that the QTc interval was positively associated with ZPP (β=0.299, 95% CI 0.130 to 0.468) after adjusting for potential confounders.ConclusionsOur study provided evidences that occupational exposure to Pb may be associated with worse ECG outcomes (high QRS voltage), which might be related to decreased levels of RyR1.

Funder

Nanchang University Breeding Grant of Major Scientific and Technological Achievements for Comprehensive Reform Special Project

Innovation Project of Nanchang University for Graduate Student

The National Natural Science Foundation of China

Innovation Project of Jiangxi Province for Graduate Student

Special Foundation for State Major Basic Research Program of China

Publisher

BMJ

Subject

Public Health, Environmental and Occupational Health

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3