Elevated Alu retroelement copy number among workers exposed to diesel engine exhaust

Author:

Wong Jason Y.Y.ORCID,Cawthon Richard,Dai Yufei,Vermeulen RoelORCID,Bassig Bryan A.,Hu Wei,Duan HuaweiORCID,Niu Yong,Downward George S.ORCID,Leng Shuguang,Ji Bu-Tian,Fu Wei,Xu Jun,Meliefste Kees,Zhou Baosen,Yang Jufang,Ren Dianzhi,Ye Meng,Jia Xiaowei,Meng Tao,Bin Ping,Hosgood, III H. Dean,Silverman Debra T.,Rothman Nathaniel,Zheng Yuxin,Lan Qing

Abstract

BackgroundMillions of workers worldwide are exposed to diesel engine exhaust (DEE), a known genotoxic carcinogen. Alu retroelements are repetitive DNA sequences that can multiply and compromise genomic stability. There is some evidence linking altered Alu repeats to cancer and elevated mortality risks. However, whether Alu repeats are influenced by environmental pollutants is unexplored. In an occupational setting with high DEE exposure levels, we investigated associations with Alu repeat copy number.MethodsA cross-sectional study of 54 male DEE-exposed workers from an engine testing facility and a comparison group of 55 male unexposed controls was conducted in China. Personal air samples were assessed for elemental carbon, a DEE surrogate, using NIOSH Method 5040. Quantitative PCR (qPCR) was used to measure Alu repeat copy number relative to albumin (Alb) single-gene copy number in leucocyte DNA. The unitless Alu/Alb ratio reflects the average quantity of Alu repeats per cell. Linear regression models adjusted for age and smoking status were used to estimate relations between DEE-exposed workers versus unexposed controls, DEE tertiles (6.1–39.0, 39.1–54.5 and 54.6–107.7 µg/m3) and Alu/Alb ratio.ResultsDEE-exposed workers had a higher average Alu/Alb ratio than the unexposed controls (p=0.03). Further, we found a positive exposure–response relationship (p=0.02). The Alu/Alb ratio was highest among workers exposed to the top tertile of DEE versus the unexposed controls (1.12±0.08 SD vs 1.06±0.07 SD, p=0.01).ConclusionOur findings suggest that DEE exposure may contribute to genomic instability. Further investigations of environmental pollutants, Alu copy number and carcinogenesis are warranted.

Funder

National Cancer Institute

Key Program of National Natural Science Foundation of China

Publisher

BMJ

Subject

Public Health, Environmental and Occupational Health

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3