Abstract
BackgroundThe use of brain imaging techniques in healthcare simulation is relatively rare. However, the use of mobile, wireless technique, such as functional near-infrared spectroscopy (fNIRS), is becoming a useful tool for assessing the unique demands of simulation learning. For this study, this imaging technique was used to evaluate cognitive load during simulation learning events.MethodsThis study took place in relation to six simulation activities, paired for similarity, and evaluated comparative cognitive change between the three task pairs. The three paired tasks were: receiving a (1) face-to-face and (2) video patient handover; observing a simulated scene in (1) two dimensions and (2) 360° field of vision; and on a simulated patient (1) taking a pulse and (2) taking a pulse and respiratory rate simultaneously. The total number of participants was n=12.ResultsIn this study, fNIRS was sensitive to variations in task difficulty in common simulation tools and scenarios, showing an increase in oxygenated haemoglobin concentration and a decrease in deoxygenated haemoglobin concentration, as tasks increased in cognitive load.ConclusionOverall, findings confirmed the usefulness of neurohaemoglobin concentration markers as an evaluation tool of cognitive change in healthcare simulation. Study findings suggested that cognitive load increases in more complex cognitive tasks in simulation learning events. Task performance that increased in complexity therefore affected cognitive markers, with increase in mental effort required.
Subject
Health Informatics,Education,Modeling and Simulation
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献