Early assessment with a virtual reality haptic simulator predicts performance in clinical practice

Author:

Al-Saud Loulwa MORCID,Mushtaq FaisalORCID,Mann Richard P,Mirghani Isra'a,Balkhoyor Ahmed,Harris Richard,Osnes CecilieORCID,Keeling Andrew,Mon-Williams Mark A,Manogue Michael

Abstract

BackgroundPrediction of clinical training aptitude in medicine and dentistry is largely driven by measures of a student’s intellectual capabilities. The measurement of sensorimotor ability has lagged behind, despite being a key constraint for safe and efficient practice in procedure-based medical specialties. Virtual reality (VR) haptic simulators, systems able to provide objective measures of sensorimotor performance, are beginning to establish their utility in facilitating sensorimotor skill acquisition, and it is possible that they may also inform the prediction of clinical performance.MethodsA retrospective cohort study examined the relationship between student performance on a haptic VR simulator in the second year of undergraduate dental study with subsequent clinic performance involving patients 2 years later. The predictive ability was tested against a phantom-head crown test (a traditional preclinical dental assessment, in the third year of study).ResultsVR scores averaged across the year explained 14% of variance in clinic performance, while the traditional test explained 5%. Students who scored highly on this averaged measure were ~10 times more likely to be high performers in the clinical crown test. Exploratory analysis indicated that single-trial VR scores did not correlate with real-world performance, but the relationship was statistically significant and strongest in the first half of the year and weakened over time.ConclusionsThe data demonstrate the potential of a VR haptic simulator to predict clinical performance and open up the possibility of taking a data-driven approach to identifying individuals who could benefit from support in the early stages of training.

Funder

Faisal Mushtaq and Mark Mon-Williams were further supported by a Research Grant from the EPSRC

Faisal Mushtaq, Richard P. Mann and Mark Mon-Williams were supported by Fellowships from the Alan Turing Institute.

Publisher

BMJ

Subject

Health Informatics,Education,Modelling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3