Clinical prediction models for mortality in patients with covid-19: external validation and individual participant data meta-analysis

Author:

de Jong Valentijn M TORCID,Rousset Rebecca ZORCID,Antonio-Villa Neftalí EduardoORCID,Buenen Arnoldus GORCID,Van Calster BenORCID,Bello-Chavolla Omar YaxmehenORCID,Brunskill Nigel J,Curcin VasaORCID,Damen Johanna A AORCID,Fermín-Martínez Carlos AORCID,Fernández-Chirino LuisaORCID,Ferrari DavideORCID,Free Robert C,Gupta Rishi KORCID,Haldar Pranabashis,Hedberg PontusORCID,Korang Steven KwasiORCID,Kurstjens Steef,Kusters Ron,Major Rupert WORCID,Maxwell Lauren,Nair Rajeshwari,Naucler PontusORCID,Nguyen Tri-LongORCID,Noursadeghi Mahdad,Rosa RossanaORCID,Soares FelipeORCID,Takada ToshihikoORCID,van Royen Florien SORCID,van Smeden MaartenORCID,Wynants LaureORCID,Modrák MartinORCID,Asselbergs Folkert WORCID,Linschoten MarijkeORCID,Moons Karel G M,Debray Thomas P AORCID, ,

Abstract

AbstractObjectiveTo externally validate various prognostic models and scoring rules for predicting short term mortality in patients admitted to hospital for covid-19.DesignTwo stage individual participant data meta-analysis.SettingSecondary and tertiary care.Participants46 914 patients across 18 countries, admitted to a hospital with polymerase chain reaction confirmed covid-19 from November 2019 to April 2021.Data sourcesMultiple (clustered) cohorts in Brazil, Belgium, China, Czech Republic, Egypt, France, Iran, Israel, Italy, Mexico, Netherlands, Portugal, Russia, Saudi Arabia, Spain, Sweden, United Kingdom, and United States previously identified by a living systematic review of covid-19 prediction models published inThe BMJ, and through PROSPERO, reference checking, and expert knowledge.Model selection and eligibility criteriaPrognostic models identified by the living systematic review and through contacting experts. A priori models were excluded that had a high risk of bias in the participant domain of PROBAST (prediction model study risk of bias assessment tool) or for which the applicability was deemed poor.MethodsEight prognostic models with diverse predictors were identified and validated. A two stage individual participant data meta-analysis was performed of the estimated model concordance (C) statistic, calibration slope, calibration-in-the-large, and observed to expected ratio (O:E) across the included clusters.Main outcome measures30 day mortality or in-hospital mortality.ResultsDatasets included 27 clusters from 18 different countries and contained data on 46 914patients. The pooled estimates ranged from 0.67 to 0.80 (C statistic), 0.22 to 1.22 (calibration slope), and 0.18 to 2.59 (O:E ratio) and were prone to substantial between study heterogeneity. The 4C Mortality Score by Knight et al (pooled C statistic 0.80, 95% confidence interval 0.75 to 0.84, 95% prediction interval 0.72 to 0.86) and clinical model by Wang et al (0.77, 0.73 to 0.80, 0.63 to 0.87) had the highest discriminative ability. On average, 29% fewer deaths were observed than predicted by the 4C Mortality Score (pooled O:E 0.71, 95% confidence interval 0.45 to 1.11, 95% prediction interval 0.21 to 2.39), 35% fewer than predicted by the Wang clinical model (0.65, 0.52 to 0.82, 0.23 to 1.89), and 4% fewer than predicted by Xie et al’s model (0.96, 0.59 to 1.55, 0.21 to 4.28).ConclusionThe prognostic value of the included models varied greatly between the data sources. Although the Knight 4C Mortality Score and Wang clinical model appeared most promising, recalibration (intercept and slope updates) is needed before implementation in routine care.

Publisher

BMJ

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3