Abstract
PurposeTo investigate the fluid dynamics and turbulence in the anterior chamber during phacoemulsification with a new propeller turbo tip using computational fluid dynamics methods.MethodsA theoretical study, three-dimensional model with the corresponding mathematical equations for the propeller turbo phaco tip, anterior chamber and lens capsular bag was developed. A simulation was performed for the new propeller turbo tip with various parameter settings (vacuum, irrigation bottle height and phaco power). Fluid dynamics and turbulence in the anterior chamber, lens capsular bag and phaco tip were evaluated. The linear relationship between the different setting parameters and a stable anterior chamber pressure was assessed.ResultsThe fluid dynamic turbulence was mainly symmetrically distributed in the anterior chamber. Propeller turbo phaco tip vibration caused increased fluid velocity and asymmetrical fluid turbulence in the metal lumen but had little influence on dynamic intraocular pressure. Reasonable phaco machine parameter settings can maintain a stable intraocular pressure during phacoemulsification.ConclusionsEvaluation of phacoemulsification fluid dynamics using computational simulation methods could provide detailed information about the influence of the propeller on dynamic intraocular pressure during phacoemulsification, which is useful for a better understanding of this procedure.
Funder
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献