High-resolution scanning electron microscopy for the analysis of three-dimensional ultrastructure of clots in acute ischemic stroke

Author:

Mereuta Oana MadalinaORCID,Fitzgerald SeánORCID,Christensen Trace AORCID,Jaspersen Adam L,Dai DayingORCID,Abbasi MehdiORCID,Puttappa TejaswiniORCID,Kadirvel RamORCID,Kallmes David F,Doyle Karen M,Brinjikji WaleedORCID

Abstract

BackgroundCharacterization of acute ischemic stroke (AIS) clots has typically focused on two-dimensional histological analysis of the thrombus. The three-dimensional (3D) architecture and distribution of components within emboli have not been fully investigated. The aim of this study was to examine the composition and microstructure of AIS clots using histology and serial block-face scanning electron microscopy (SBFSEM).MethodsAs part of the multi-institutional STRIP registry, 10 consecutive AIS emboli were collected from 10 patients treated by mechanical thrombectomy. Histological and immunohistochemical analysis was performed to determine clot composition. SBFSEM was used to assess the ultrastructural organization of the clots and specific features of individual components.ResultsQuantification of Martius Scarlett Blue stain identified fibrin (44.4%) and red blood cells (RBCs, 32.6%) as the main components. Immunohistochemistry showed a mean platelet and von Willebrand factor content of 23.9% and 11.8%, respectively. The 3D organization of emboli varied greatly depending on the region analyzed. RBC-rich areas were composed mainly of tightly packed RBCs deformed into polyhedrocytes with scant fibrin fibers interwoven between cells. The regions with mixed composition showed thick fibrin fibers along with platelets, white blood cells and RBC clusters. Fibrin-rich areas contained dense fibrin masses with sparse RBC. In three cases, the fibrin formed a grid-like or a sponge-like pattern, likely due to thrombolytic treatment. Segmentation showed that fibrin fibers were thinner and less densely packed in these cases.Conclusions3D-SEM provides novel and potentially clinically relevant information on clot components and ultrastructure which may help to inform thrombolytic treatment and medical device design.

Funder

European Regional Development Fund

National Institutes of Health

Science Foundation Ireland

Publisher

BMJ

Subject

Neurology (clinical),General Medicine,Surgery

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3