Performance of Radiomics derived morphological features for prediction of aneurysm rupture status

Author:

Ludwig Calvin GeraldORCID,Lauric Alexandra,Malek Justin A,Mulligan Ryan,Malek Adel MORCID

Abstract

BackgroundMorphological differences between ruptured and unruptured cerebral aneurysms represent a focus of neuroimaging researchfor understanding the mechanisms of aneurysmal rupture. We evaluated the performance of Radiomics derived morphological features, recently proposed for rupture status classification, against automatically measured shape and size features previously established in the literature.Methods353 aneurysms (123 ruptured) from three-dimensional rotational catheter angiography (3DRA) datasets were analyzed. Based on a literature review, 13 Radiomics and 13 established morphological descriptors were automatically extracted per aneurysm, and evaluated for rupture status prediction using univariate and multivariate statistical analysis, yielding an area under the curve (AUC) metric of the receiver operating characteristic.ResultsValidation of overlapping descriptors for size/volume using both methods were highly correlated (p<0.0001, R2=0.99). Univariate analysis selected AspectRatio (p<0.0001, AUC=0.75), Non-sphericity Index (p<0.0001, AUC=0.75), Height/Width (p<0.0001, AUC=0.73), and SizeRatio (p<0.0001, AUC=0.73) as best among established descriptors, and Elongation (p<0.0001, AUC=0.71) and Flatness (p<0.0001, AUC=0.72) among Radiomics features. Radiomics Elongation correlated best with established Height/Width (R2=0.52), whereas Radiomics Flatness correlated best with Ellipticity Index (R2=0.54). Radiomics Sphericity correlated best with Undulation Index (R2=0.65). Best Radiomics performers, Elongation and Flatness, were highly correlated descriptors (p<0.0001, R2=0.75). In multivariate analysis, established descriptors (Height/Width, SizeRatio, Ellipticity Index; AUC=0.79) outperformed Radiomics features (Elongation, Maximum3Ddiameter; AUC=0.75).ConclusionAlthough recently introduced Radiomics analysis for aneurysm shape and size evaluation has the advantage of being an efficient operator independent methodology, it currently offers inferior rupture status discriminant performance compared with established descriptors. Future research is needed to extend the current Radiomics feature set to better capture aneurysm shape information.

Publisher

BMJ

Subject

Clinical Neurology,General Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3