Author:
Brinjikji Waleed,Chung Bong Jae,Jimenez Carlos,Putman Christopher,Kallmes David F,Cebral Juan R
Abstract
BackgroundWhile clinical and angiographic risk factors for intracranial aneurysm instability are well established, it is reasonable to postulate that intra-aneurysmal hemodynamics also have a role in aneurysm instability.ObjectiveTo identify hemodynamic characteristics that differ between radiologically unstable and stable unruptured intracranial aneurysms.Materials and methods12 pairs of unruptured intracranial aneurysms with a 3D rotational angiographic set of images and followed up longitudinally without treatment were studied. Each pair consisted of one stable aneurysm (no change on serial imaging) and one unstable aneurysm (demonstrated growth of at least 1 mm diameter or ruptured during follow-up) of matching size (within 10%) and locations. Patient-specific computational fluid dynamics models were created and run under pulsatile flow conditions. Relevant hemodynamic and geometric variables were calculated and compared between groups using the paired Wilcoxon test.ResultsThe area of the aneurysm under low wall shear stress (low shear stress area (LSA)) was 2.26 times larger in unstable aneurysms than in stable aneurysms (p=0.0499). The mean aneurysm vorticity was smaller by a factor of 0.57 in unstable aneurysms compared with stable aneurysms (p=0.0499). No statistically significant differences in geometric variables or shape indices were found.ConclusionsThis pilot study suggests there may be hemodynamic differences between unstable and stable unruptured cerebral aneurysms. In particular, the area under low wall shear stress was larger in unstable aneurysms. These findings should be considered tentative until confirmed by future larger studies.
Subject
Neurology (clinical),General Medicine,Surgery
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献