Analysis of neointima development in flow diverters using optical coherence tomography imaging

Author:

Matsuda Yoshikazu,Chung Joonho,Lopes Demetrius K

Abstract

BackgroundFlow diverters are used for the treatment of intracranial aneurysms. Surface modification may decrease the thrombogenicity of flow diverters but the details are unknown. Optical coherence tomography (OCT) is an intravascular imaging test with high resolution which identifies neointimal growth over stents. We compared the development of neointima in a flow diverter and stents with and without surface modification in a swine model.MethodsIn this study we implanted four devices (two in each carotid artery) in four pigs. The devices used were the Pipeline Flex embolization device (PED Flex, n=6), PED with Shield technology (PED Shield, n=6), and Solitaire AB (n=4). Serial carotid angiographic and OCT images were obtained on days 0, 7, 14, and 21. The data analyzed included: neointimal area (lumen area − stent area), neointimal ratio ([lumen area − stent area]/stent area), and the neointimal thickness ratio (minimum neointimal thickness/maximum neointimal thickness).ResultsThere was no significant difference in where neointima formation was initiated in relation to the implanted device (distal vs middle vs proximal). The PED Shield had a trend towards earlier endothelial formation at day 7. By day 21 the neointimal ratio was significantly higher for the PED Flex and PED Shield devices than for Solitaire (p<0.05 and p<0.01, respectively). The neointimal thickness ratio was significantly higher with PED Shield than with PED Flex and Solitaire (p<0.05 and p<0.01, respectively).ConclusionsOCT enabled us to follow and compare in vivo the development of neointima over implants. PED Shield showed a similar neointimal volume to PED Flex and more concentric neointima.

Publisher

BMJ

Subject

Neurology (clinical),General Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3