Author:
Yi Zongchao,He Bingwei,Liu Yuqing,Huang Shenyue,Hong Wenyao
Abstract
ObjectiveIn this article, a craniocerebral model is introduced for neurosurgical training, which is patient-specific, tactile-realistic, and with adjustable intracranial pressure.MethodsThe patient-specific feature is achieved by modeling from CT scans and magnetic resonance images (MRI). The brain tissue model is built by the hydrogel casting technique, while scalp, skull, vasculature, and lateral ventricles are all-in-one fabricated by three-dimensional (3D) printing. A closed-loop system is integrated to monitor and control the intracranial pressure. 3D measurements, mechanical tests, and simulated external ventricular drain (EVD) placement procedures are conducted on the model.ResultsA neurosurgical training model is completed with high accuracy (mean deviation 0.36 mm). The hydrogel brain tissue has a stiffness more similar to that of a real brain than the common 3D printed materials. The elasticity modulus of hydrogel brain tissue model is E=25.71 kPa, compared with our softest 3D printed material with E=1.14×103 kPa. Ten experienced surgeons rate the tactile realness of the neurosurgical training model at an average point of 4.25 on a scale from 1 (strongly negative) to 5 (strongly positive). The neurosurgical training model is also rated to be realistic in size (4.82), anatomy (4.70), and effective as an aid to improve blind EVD placement skills (4.65).ConclusionsThe neurosurgical training model can provide trainee surgeons with realistic experience in both tactile feedbacks and craniocerebral anatomy, improving their surgical skills.
Funder
Fujian Provincial Health and Family Planning Commission
Fujian Medical University
Subject
Neurology (clinical),General Medicine,Surgery
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献