AI software detection of large vessel occlusion stroke on CT angiography: a real-world prospective diagnostic test accuracy study

Author:

Matsoukas StavrosORCID,Morey Jacob,Lock Gregory,Chada Deeksha,Shigematsu Tomoyoshi,Marayati Naoum Fares,Delman Bradley N,Doshi Amish,Majidi Shahram,De Leacy Reade,Kellner Christopher PaulORCID,Fifi Johanna T

Abstract

BackgroundArtificial intelligence (AI) software is increasingly applied in stroke diagnostics. However, the actual performance of AI tools for identifying large vessel occlusion (LVO) stroke in real time in a real-world setting has not been fully studied.ObjectiveTo determine the accuracy of AI software in a real-world, three-tiered multihospital stroke network.MethodsAll consecutive head and neck CT angiography (CTA) scans performed during stroke codes and run through an AI software engine (Viz LVO) between May 2019 and October 2020 were prospectively collected. CTA readings by radiologists served as the clinical reference standard test and Viz LVO output served as the index test. Accuracy metrics were calculated.ResultsOf a total of 1822 CTAs performed, 190 occlusions were identified; 142 of which were internal carotid artery terminus (ICA-T), middle cerebral artery M1, or M2 locations. Accuracy metrics were analyzed for two different groups: ICA-T and M1 ±M2. For the ICA-T/M1 versus the ICA-T/M1/M2 group, sensitivity was 93.8% vs 74.6%, specificity was 91.1% vs 91.1%, negative predictive value was 99.7% vs 97.6%, accuracy was 91.2% vs 89.8%, and area under the curve was 0.95 vs 0.86, respectively. Detection rates for ICA-T, M1, and M2 occlusions were 100%, 93%, and 49%, respectively. As expected, the algorithm offered better detection rates for proximal occlusions than for mid/distal M2 occlusions (58% vs 28%, p=0.03).ConclusionsThese accuracy metrics support Viz LVO as a useful adjunct tool in stroke diagnostics. Fast and accurate diagnosis with high negative predictive value mitigates missing potentially salvageable patients.

Publisher

BMJ

Subject

Neurology (clinical),General Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3