A systematic characterization of the factors influencing polymerization and dynamic behavior of n-butyl cyanoacrylate

Author:

Wang Bill H,Boulton Melfort,Lee Donald H,Pelz David M,Lownie Stephen P

Abstract

IntroductionBrain arteriovenous malformations are abnormal connections between arteries and veins without an intervening capillary bed. Endovascular glue embolization with N-butyl cyanoacrylate (NBCA) is an accepted form of treatment. The reported complication rates vary widely from 2% to 15%, and timing of polymerization appears to play a major role. Additionally, the interaction between NBCA and vessel surface as well as the presence of biological catalysts are poorly understood.MethodsPolymerization time was measured for mixtures of Lipiodol/NBCA of 50/50, 70/30, and 60/40. The influence of pH, temperature, and the presence of biological catalysts on polymerization time was investigated. Contact angles were measured on polyvinyl alcohol cryogel (PVA-C), silicone, and endothelial surfaces in a submerged aqueous environment to assess physical surface interactions. High speed video analysis of glue injection through a microcatheter was performed to characterize simulated coaxial flow.ResultsNBCA polymerization rate increased with pH and temperature. A hydrophilic surface such as PVA-C was better than silicone at mimicking the physical properties of endothelium. Live endothelium provided a catalytic surface that at least doubled the rate of polymerization. Blood products further increased the polymerization rate in the following order (slowest to fastest): plasma, platelets, red blood cells (RBCs), and lysed RBCs. These factors could explain the discrepancy between in vitro and in vivo results reported in the current literature. High speed video analysis of NBCA injection showed dripping to jetting transition with significant wall effect which deviated from previous ideal assumptions.ConclusionsThe determinants of NBCA polymerization rate are multifactorial and dependent mainly on the presence of biological catalysts coupled with flow related wall interaction.

Funder

Canadian Institutes of Health Research

Publisher

BMJ

Subject

Clinical Neurology,General Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3