Prediction of cerebral aneurysm rupture using a point cloud neural network

Author:

Luo Xiaoyuan,Wang Jienan,Liang Xinmei,Yan Lei,Chen XinHua,He Jian,Luo Jing,Zhao BingORCID,He Guangchen,Wang Manning,Zhu YueqiORCID

Abstract

ObjectiveAccurate prediction of cerebral aneurysm (CA) rupture is of great significance. We intended to evaluate the accuracy of the point cloud neural network (PC-NN) in predicting CA rupture using MR angiography (MRA) and CT angiography (CTA) data.Methods418 CAs in 411 consecutive patients confirmed by CTA (n=180) or MRA (n=238) in a single hospital were retrospectively analyzed. A PC-NN aneurysm model with/without parent artery involvement was used for CA rupture prediction and compared with ridge regression, support vector machine (SVM) and neural network (NN) models based on radiomics features. Furthermore, the performance of the trained PC-NN and radiomics-based models was prospectively evaluated in 258 CAs of 254 patients from five external centers.ResultsIn the internal test data, the area under the curve (AUC) of the PC-NN model trained with parent artery (AUC=0.913) was significantly higher than that of the PC-NN model trained without parent artery (AUC=0.851; p=0.041) and of the ridge regression (AUC=0.803; p=0.019), SVM (AUC=0.788; p=0.013) and NN (AUC=0.805; p=0.023) radiomics-based models. Additionally, the PC-NN model trained with MRA source data achieved a higher prediction accuracy (AUC=0.936) than that trained with CTA source data (AUC=0.824; p=0.043). In external data of prospective cohort patients, the AUC of PC-NN was 0.835, significantly higher than ridge regression (0.692; p<0.001), SVM (0.701; p<0.001) and NN (0.681; p<0.001) models.ConclusionPC-NNs can achieve more accurate CA rupture prediction than traditional radiomics-based models. Furthermore, the performance of the PC-NN model trained with MRA data was superior to that trained with CTA data.

Funder

Shanghai Municipal Education Commission

Shanghai Jiao Tong University Medical and Research Program

Publisher

BMJ

Subject

Neurology (clinical),General Medicine,Surgery

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3