Machine learning improves prediction of delayed cerebral ischemia in patients with subarachnoid hemorrhage

Author:

Ramos Lucas Alexandre,van der Steen Wessel E,Sales Barros Renan,Majoie Charles B L M,van den Berg Rene,Verbaan Dagmar,Vandertop W Peter,Zijlstra I Jsbrand Andreas Jan,Zwinderman A H,Strijkers Gustav J,Olabarriaga Silvia Delgado,Marquering Henk A

Abstract

Background and purposeDelayed cerebral ischemia (DCI) is a severe complication in patients with aneurysmal subarachnoid hemorrhage. Several associated predictors have been previously identified. However, their predictive value is generally low. We hypothesize that Machine Learning (ML) algorithms for the prediction of DCI using a combination of clinical and image data lead to higher predictive accuracy than previously applied logistic regressions.Materials and methodsClinical and baseline CT image data from 317 patients with aneurysmal subarachnoid hemorrhage were included. Three types of analysis were performed to predict DCI. First, the prognostic value of known predictors was assessed with logistic regression models. Second, ML models were created using all clinical variables. Third, image features were extracted from the CT images using an auto-encoder and combined with clinical data to create ML models. Accuracy was evaluated based on the area under the curve (AUC), sensitivity and specificity with 95% CI.ResultsThe best AUC of the logistic regression models for known predictors was 0.63 (95% CI 0.62 to 0.63). For the ML algorithms with clinical data there was a small but statistically significant improvement in the AUC to 0.68 (95% CI 0.65 to 0.69). Notably, aneurysm width and height were included in many of the ML models. The AUC was highest for ML models that also included image features: 0.74 (95% CI 0.72 to 0.75).ConclusionML algorithms significantly improve the prediction of DCI in patients with aneurysmal subarachnoid hemorrhage, particularly when image features are also included. Our experiments suggest that aneurysm characteristics are also associated with the development of DCI.

Funder

ITEA

Publisher

BMJ

Subject

Neurology (clinical),General Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3