Preliminary outcomes of single antiplatelet therapy for surface-modified flow diverters in an animal model: analysis of neointimal development and thrombus formation using OCT

Author:

Matsuda Yoshikazu,Jang Dong-Kyu,Chung Joonho,Wainwright John Michael,Lopes Demetrius

Abstract

ObjectiveTo evaluate the rate of neointimal development and thrombus formation of surface-modified flow diverters in single antiplatelet therapy (SAPT) using optical coherence tomography (OCT) in a porcine model.MethodsWe divided 10 experimental pigs into two groups. One group (n=6) received dual antiplatelet therapy (DAPT) and the other group (n=4) received SAPT. Four stents (two per carotid artery) were implanted in both groups. The stents used were the Pipeline Flex embolization device (PED Flex), Pipeline Flex with Shield technology (PED Shield), and the Solitaire AB stent. All animals underwent weekly angiography and OCT. The OCT data were analyzed using the following measurements: neointimal ratio ((stent – lumen area)/stent area), stent-coverage ratio (number of stent struts covered by neointima/total stent struts), and the presence or absence of thrombus formation per 1 mm cross-section.ResultsPED Flex and Shield in the SAPT group had higher neointimal ratios than in the DAPT group (P<0.001, respectively). In the DAPT group, the speed of endothelial growth on day 7 in the PED Shield group was higher than that in the PED Flex group (P<0.001). In the SAPT group, PED Flex demonstrated significantly more thrombus formation on day 7 than PED Shield (P<0.001).ConclusionsThe PED Shield stent showed faster endothelial growth than the other devices and comparable neointimal volume. There was significantly less thrombus formation on PED Shield than PED Flex when using SAPT in a porcine model.

Funder

Medtrinic

Cure4Stroke foundation

Publisher

BMJ

Subject

Neurology (clinical),General Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3