Abstract
ObjectiveCurrent biomarkers for predicting immunotherapy response in non-small-cell lung cancer (NSCLC) are derived from invasive procedures with limited predictive accuracy. Thus, identifying a non-invasive predictive biomarker would improve patient stratification and precision immunotherapy.Methods and analysisIn this retrospective multicohort study, the discovery cohort included 205 NSCLC patients screened from ORIENT-11 and an external validation (EV) cohort included 99 real-world NSCLC patients. The ‘onion-mode segmentation’ method was developed to extract ‘onion-mode perfusion’ (OMP) from contrast-enhanced CT images. The predictive performance of OMP or its combination with the PD-L1 Tumour Proportion Score (TPS) was evaluated by the area under the curve (AUC).ResultsHigh baseline OMP was associated with significantly longer survival and predicted patient response to combination anti-PD-(L)1 therapy in the discovery and EV cohorts. OMP complemented the PD-L1 TPS with superior predictive sensitivity (p=0.02). In the PD-L1 TPS<50% subgroup, OMP achieved an AUC of 0.77 for the estimation of treatment response (95% CI 0.66 to 0.86, p<0.0001). A simple bivariate model of OMP/PD-L1 robustly predicted therapeutic response in both the discovery (AUC 0.82, 95% CI 0.74 to 0.88, p<0.0001) and EV (AUC 0.80, 95% CI 0.67 to 0.89, p<0.0001) cohorts.ConclusionOMP, derived from routine CT examination, could serve as a non-invasive and cost-effective biomarker to predict NSCLC patient response to immune checkpoint inhibitor-based therapy. OMP could be used alone or in combination with other biomarkers to improve precision immunotherapy.
Funder
Interdisciplinary Basic Frontier Innovation Program of Suzhou Medical College of Soochow University
the National Foundation for Cancer Research
the Priority Academic Program Development of Jiangsu Higher Education Institutions
the 2022 Jiangsu Science and Technology Plan Special Fund
Jane's Trust Foundation
Jiangsu Provincial Medical Key Discipline
National Natural Science Foundation of China
the Collaborative Innovation Center of Hematology
Nile Albright Research Foundation
the Ludwig Cancer Center at Harvard