Baseline tumour vessel perfusion as a non-invasive predictive biomarker for immune checkpoint therapy in non-small-cell lung cancer

Author:

Liu Zhenhua,Ma Ke,Jia Qingzhu,Yang Yunpeng,Fan Peng,Wang Ying,Wang Junhui,Sun Jiya,Sun Liansai,Shi Hongtai,Sun Liang,Zhu Bo,Xu Wei,Zhang Li,Jain Rakesh K.,Qin Songbing,Huang YuhuiORCID

Abstract

ObjectiveCurrent biomarkers for predicting immunotherapy response in non-small-cell lung cancer (NSCLC) are derived from invasive procedures with limited predictive accuracy. Thus, identifying a non-invasive predictive biomarker would improve patient stratification and precision immunotherapy.Methods and analysisIn this retrospective multicohort study, the discovery cohort included 205 NSCLC patients screened from ORIENT-11 and an external validation (EV) cohort included 99 real-world NSCLC patients. The ‘onion-mode segmentation’ method was developed to extract ‘onion-mode perfusion’ (OMP) from contrast-enhanced CT images. The predictive performance of OMP or its combination with the PD-L1 Tumour Proportion Score (TPS) was evaluated by the area under the curve (AUC).ResultsHigh baseline OMP was associated with significantly longer survival and predicted patient response to combination anti-PD-(L)1 therapy in the discovery and EV cohorts. OMP complemented the PD-L1 TPS with superior predictive sensitivity (p=0.02). In the PD-L1 TPS<50% subgroup, OMP achieved an AUC of 0.77 for the estimation of treatment response (95% CI 0.66 to 0.86, p<0.0001). A simple bivariate model of OMP/PD-L1 robustly predicted therapeutic response in both the discovery (AUC 0.82, 95% CI 0.74 to 0.88, p<0.0001) and EV (AUC 0.80, 95% CI 0.67 to 0.89, p<0.0001) cohorts.ConclusionOMP, derived from routine CT examination, could serve as a non-invasive and cost-effective biomarker to predict NSCLC patient response to immune checkpoint inhibitor-based therapy. OMP could be used alone or in combination with other biomarkers to improve precision immunotherapy.

Funder

Interdisciplinary Basic Frontier Innovation Program of Suzhou Medical College of Soochow University

the National Foundation for Cancer Research

the Priority Academic Program Development of Jiangsu Higher Education Institutions

the 2022 Jiangsu Science and Technology Plan Special Fund

Jane's Trust Foundation

Jiangsu Provincial Medical Key Discipline

National Natural Science Foundation of China

the Collaborative Innovation Center of Hematology

Nile Albright Research Foundation

the Ludwig Cancer Center at Harvard

Publisher

BMJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3