Echo-guided left ventricular assist device speed optimisation for exercise maximisation

Author:

Stapor MaciejORCID,Pilat Adam,Gackowski Andrzej,Misiuda Agnieszka,Gorkiewicz-Kot Izabela,Kaleta Michal,Kleczynski Pawel,Zmudka Krzysztof,Legutko Jacek,Kapelak Boguslaw,Wierzbicki Karol

Abstract

ObjectiveCurrent generation left ventricular assist devices (LVADs) operate with a fixed rotation speed and no automated speed adjustment function. This study evaluates the concept of physiological pump speed optimisation based on aortic valve opening (AVO) imaging during a cardiopulmonary exercise test (CPET).MethodsThis prospective crossover study (NCT05063006) enrolled patients with implanted third-generation LVADs with hydrodynamic bearing. After resting speed optimisation, patients were randomised to a fixed-modified speed or modified-fixed speed CPET sequence. Fixed speed CPET maintained baseline pump settings. During the modified speed CPET, the LVAD speed was continuously altered to preserve periodic AVO.ResultsWe included 22 patients, the mean age was 58.4±7 years, 4.5% were women and 54.5% had ischaemic cardiomyopathy. Exertional AVO assessment was feasible in all subjects. Maintaining periodic AVO allowed to safely raise the pump speed from 2900 (IQR 2640–3000) to 3440 revolutions per minute (RPM) (IQR 3100–3700; p<0.001). As a result, peak oxygen consumption increased from 11.1±2.4 to 12.8±2.8 mL/kg/min (p<0.001) and maximum workload from 1.1 (IQR 0.9–1.5) to 1.2 W/kg (IQR 0.9–1.7; p=0.028). The Borg scale exertion level decreased from 15.2±1.5 to 13.5±1.2 (p=0.005).ConclusionsTransthoracic AVO imaging is possible during CPETs in patients with LVAD. Dynamic echo-guided pump speed adjustment based on the AVO improves exercise tolerance and augments peak oxygen consumption and maximum workload.

Funder

Medtronic Poland Sp. z o.o.

Cor Aegrum Foundation of Cardiac Surgery Development in Cracow

Jagiellonian University

Polish Ministry of Science and Higher Education

Publisher

BMJ

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3