Automatic detection of cardiac conditions from photos of electrocardiogram captured by smartphones

Author:

Wong Chun-KaORCID,Lau Yuk Ming,Lui Hin Wai,Chan Wai Fung,San Wing Chun,Zhou Mi,Cheng Yangyang,Huang Duo,Lai Wing Hon,Lau Yee Man,Siu Chung Wah

Abstract

Background Researchers have developed machine learning-based ECG diagnostic algorithms that match or even surpass cardiologist level of performance. However, most of them cannot be used in real-world, as older generation ECG machines do not permit installation of new algorithms. Objective To develop a smartphone application that automatically extract ECG waveforms from photos and to convert them to voltage-time series for downstream analysis by a variety of diagnostic algorithms built by researchers. Methods A novel approach of using objective detection and image segmentation models to automatically extract ECG waveforms from photos taken by clinicians was devised. Modular machine learning models were developed to sequentially perform waveform identification, gridline removal, and scale calibration. The extracted data were then analysed using a machine learning-based cardiac rhythm classifier. Results Waveforms from 40 516 scanned and 444 photographed ECGs were automatically extracted. 12 828 of 13 258 (96.8%) scanned and 5399 of 5743 (94.0%) photographed waveforms were correctly cropped and labelled. 11 604 of 12 735 (91.1%) scanned and 5062 of 5752 (88.0%) photographed waveforms achieved successful voltage-time signal extraction after automatic gridline and background noise removal. In a proof-of-concept demonstration, an atrial fibrillation diagnostic algorithm achieved 91.3% sensitivity, 94.2% specificity, 95.6% positive predictive value, 88.6% negative predictive value and 93.4% F1 score, using photos of ECGs as input. Conclusion Object detection and image segmentation models allow automatic extraction of ECG signals from photos for downstream diagnostics. This novel pipeline circumvents the need for costly ECG hardware upgrades, thereby paving the way for large-scale implementation of machine learning-based diagnostic algorithms.

Publisher

BMJ

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3