Abstract
ObjectivesTo evaluate a predictive model for robust estimation of daily out-of-hospital cardiac arrest (OHCA) incidence using a suite of machine learning (ML) approaches and high-resolution meteorological and chronological data.MethodsIn this population-based study, we combined an OHCA nationwide registry and high-resolution meteorological and chronological datasets from Japan. We developed a model to predict daily OHCA incidence with a training dataset for 2005–2013 using the eXtreme Gradient Boosting algorithm. A dataset for 2014–2015 was used to test the predictive model. The main outcome was the accuracy of the predictive model for the number of daily OHCA events, based on mean absolute error (MAE) and mean absolute percentage error (MAPE). In general, a model with MAPE less than 10% is considered highly accurate.ResultsAmong the 1 299 784 OHCA cases, 661 052 OHCA cases of cardiac origin (525 374 cases in the training dataset on which fourfold cross-validation was performed and 135 678 cases in the testing dataset) were included in the analysis. Compared with the ML models using meteorological or chronological variables alone, the ML model with combined meteorological and chronological variables had the highest predictive accuracy in the training (MAE 1.314 and MAPE 7.007%) and testing datasets (MAE 1.547 and MAPE 7.788%). Sunday, Monday, holiday, winter, low ambient temperature and large interday or intraday temperature difference were more strongly associated with OHCA incidence than other the meteorological and chronological variables.ConclusionsA ML predictive model using comprehensive daily meteorological and chronological data allows for highly precise estimates of OHCA incidence.
Funder
Japan Society for the Promotion of Science
National Cerebral and Cardiovascular Center
Environmental Restoration and Conservation Agency
Subject
Cardiology and Cardiovascular Medicine
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献