Abstract
Clinical prediction models often aim to predict rare, high-risk events, but building such models requires robust understanding of imbalance datasets and their unique study design considerations. This practical guide highlights foundational prediction model principles for surgeon-data scientists and readers who encounter clinical prediction models, from feature engineering and algorithm selection strategies to model evaluation and design techniques specific to imbalanced datasets. We walk through a clinical example using readable code to highlight important considerations and common pitfalls in developing machine learning-based prediction models. We hope this practical guide facilitates developing and critically appraising robust clinical prediction models for the surgical community.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献