Single-cell transcriptomics reveals a low CD8+ T cell infiltrating state mediated by fibroblasts in recurrent renal cell carcinoma

Author:

Peng Yu-LuORCID,Xiong Long-Bin,Zhou Zhao-Hui,Ning Kang,Li Zhen,Wu Ze-Shen,Deng Min-Hua,Wei Wen-Su,Wang Ning,Zou Xiang-Peng,He Zhi-Song,Huang Ji-Wei,Luo Jun-HangORCID,Liu Jian-Ye,Jia Nan,Cao Yun,Han Hui,Guo Sheng-Jie,Dong Pei,Yu Chun-Ping,Zhou Fang-Jian,Zhang Zhi-Ling

Abstract

PurposeRecurrent renal cell carcinoma(reRCC) is associated with poor prognosis and the underlying mechanism is not yet clear. A comprehensive understanding of tumor microenvironment (TME) of reRCC may aid in designing effective anticancer therapies, including immunotherapies. Single-cell transcriptomics holds great promise for investigating the TME, however, this technique has not been used in reRCC. Here, we aimed to explore the difference in the TME and gene expression pattern between primary RCC (pRCC) and reRCC at single-cell level.Experimental designWe performed single-cell RNA sequencing analyses of 32,073 cells from 2 pRCC, 2 reRCC, and 3 adjacent normal kidney samples. 41 pairs of pRCC and reRCC samples were collected as a validation cohort to assess differences observed in single-cell sequencing. The prognostic significance of related cells and markers were studied in 47 RCC patients underwent immunotherapy. The function of related cells and markers were validated via in vitro and in vivo experiments.ResultsreRCC had reduced CD8+ T cells but increased cancer-associated fibroblasts (CAFs) infiltration compared with pRCC. Reduced CD8+ T cells and increased CAFs infiltration were significantly associated with a worse response from immunotherapy. Remarkably, CAFs showed substantial expression of LGALS1 (Gal1). In vitro, CAFs could induce CD8+ T cells apoptosis via Gal1. In vivo, knockdown of Gal1 in CAFs suppressed tumor growth, increased CD8+ T cells infiltration, reduced the proportion of apoptotic CD8+ T cells and enhanced the efficacy of immunotherapy.ConclusionsWe delineated the heterogeneity of reRCC and highlighted an innovative mechanism that CAFs acted as a suppressor of CD8+ T cells via Gal1. Targeting Gal1 combined with anti-PD1 showed promising efficacy in treating RCC.

Funder

National Natural Science Foundation of China

Natural Science Foundation for Distinguished Young Scholars of Guangdong Province

Publisher

BMJ

Subject

Cancer Research,Pharmacology,Oncology,Molecular Medicine,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3