Caspase-9 inhibition triggers Hsp90-based chemotherapy-mediated tumor intrinsic innate sensing and enhances antitumor immunity

Author:

Li Jingyang,Han Xiaoyu,Sun Mayu,Li Weida,Yang Guanghuan,Chen Huiyi,Guo Bao,Li Jingquan,Li XiaoguangORCID,Wang HuiORCID

Abstract

BackgroundAntineoplastic chemotherapies are dramatically efficient when they provoke immunogenic cell death (ICD), thus inducing an antitumor immune response and even tumor elimination. However, activated caspases, the hallmark of most cancer chemotherapeutic agents, render apoptosis immunologically silent. Whether they are dispensable for chemotherapy-induced cell death and the apoptotic clearance of cells in vivo is still elusive.MethodsA rational cell-based anticancer drug library screening was performed to explore the immunogenic apoptosis pathway and therapeutic targets under apoptotic caspase inhibition. Based on this screening, the potential of caspase inhibition in enhancing chemotherapy-induced antitumor immunity and the mechanism of actions was investigated by various cells and mouse models.ResultsHeat shock protein 90 (Hsp90) inhibition activates caspases in tumor cells to produce abundant genomic and mitochondrial DNA fragments and results in cell apoptosis. Meanwhile, it hijacks Caspase-9 signaling to suppress intrinsic DNA sensing. Pharmacological blockade or genetic deletion of Caspase-9 causes tumor cells to secrete interferon (IFN)-β via tumor intrinsic mitochondrial DNA/the second messenger cyclic GMP–AMP (cGAS) /stimulator of interferon genes (STING) pathway without impairing Hsp90 inhibition-induced cell death. Importantly, both Caspase-9 and Hsp90 inhibition triggers an ICD, leading to the release of numerous damage-associated molecular patterns such as high-mobility group box protein 1, ATP and type I IFNs in vitro and remarkable antitumor effects in vivo. Moreover, the combination treatment also induces adaptive resistance by upregulating programmed death-ligand 1 (PD-L1). Additional PD-L1 blockade can further overcome this acquired immune resistance and achieve complete tumor regression.ConclusionsBlockade of Caspase-9 signaling selectively provokes Hsp90-based chemotherapy-mediated tumor innate sensing, leading to CD8+T cell-dependent tumor control. Our findings implicate that pharmacological modulation of caspase pathway increases the tumor-intrinsic innate sensing and immunogenicity of chemotherapy-induced apoptosis, and synergizes with immunotherapy to overcome adaptive resistance.

Funder

National Key Research and Development Program of China

Innovative research team of high-level local universities in Shanghai and Shanghai Jiao Tong University Key Program of Medical Engineering

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Natural Science Foundation of Shanghai Municipality

Publisher

BMJ

Subject

Cancer Research,Pharmacology,Oncology,Molecular Medicine,Immunology,Immunology and Allergy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3