Overcoming leukemia heterogeneity by combining T cell engaging bispecific antibodies

Author:

Hoseini Sayed Shahabuddin,Espinosa-Cotton MadelynORCID,Guo Hong-fen,Cheung Nai-Kong V

Abstract

BackgroundLeukemia represents about 5% of all human cancers. Despite advances in therapeutics, a substantial number of patients succumb to the disease. Several subtypes of leukemia are inherently more resistant to treatment despite intensive chemotherapy or targeted therapy.MethodsHere we describe the generation of T cell engaging (CD3) bispecific antibodies (BsAbs) built on humanized IgG frameworks using the IgG(L)-scFv format against two targets expressed on acute lymphoblastic leukemia (ALL) and on acute myeloid leukemia (AML).ResultsEach BsAb mediated potent anti-leukemia effect against ALL (CD19) and AML (CD33) in vitro and in xenograft models. Importantly, the CD19-specific BsAb (BC250) was effective against hematogenous spread preventing metastases to liver and kidney in mice bearing ALL and Burkitt’s lymphoma xenografts. BC250 was more potent than the The Food and Drug Administration (FDA)-approved BsAb blinatumomab against ALL xenografts in vivo as measured by tumor bioluminescence and mouse survival. Furthermore, the combination of the CD19 and CD33 BsAbs in two xenograft models of mixed phenotype acute leukemia (biphenotypic and bilineal leukemia) was far superior than monotherapy with either of the BsAbs alone.ConclusionsSelective combinations of these leukemia-specific BsAb offer the potential to overcome tumor heterogeneity or clonal escape in the modern era of antibody-based T cell-driven immunotherapy.

Funder

Katie Find a Cure Foundation

Robert Steel Foundation

Kids Walk for Kids with Cancer NYC

Isabella Santos Foundation

Enid A. Haupt Endowed Chair

National Cancer Institute

Ymabs Therapeutics Inc.

Publisher

BMJ

Subject

Cancer Research,Pharmacology,Oncology,Molecular Medicine,Immunology,Immunology and Allergy

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3