Exosomes derived from γδ-T cells synergize with radiotherapy and preserve antitumor activities against nasopharyngeal carcinoma in immunosuppressive microenvironment

Author:

Wang Xiwei,Zhang Yanmei,Mu Xiaofeng,Tu Chloe Ran,Chung Yuet,Tsao Sai Wah,Chan Godfrey Chi-Fung,Leung Wing-Hang,Lau Yu-lung,Liu Yinping,Tu WenweiORCID

Abstract

BackgroundRadiotherapy is the first-line treatment for patients nasopharyngeal carcinoma (NPC), but its therapeutic efficacy is poor in some patients due to radioresistance. Adoptive T cell-based immunotherapy has also shown promise to control NPC; however, its antitumor efficacy may be attenuated by an immunosuppressive tumor microenvironment. Exosomes derived from γδ-T cells (γδ-T-Exos) have potent antitumor potentials. However, it remains unknown whether γδ-T-Exos have synergistic effect with radiotherapy and preserve their antitumor activities against NPC in an immunosuppressive tumor microenvironment.Methodsγδ-T-Exos were stained with fluorescent membrane dye, and their interactions with NPC were determined both in vitro and in vivo. NPC cell deaths were detected after treatment with γδ-T-Exos and/or irradiation. Moreover, effects of γδ-T-Exos on radioresistant cancer stem-like cells (CSCs) were determined. The therapeutic efficacy of combination therapy using γδ-T-Exos and irradiation on NPC tumor progression was also monitored in vivo. Finally, the tumor-killing and T cell-promoting activities of γδ-T-Exos were determined under the culture in immunosuppressive NPC supernatant.Resultsγδ-T-Exos effectively interacted with NPC tumor cells in vitro and in vivo. γδ-T-Exos not only killed NPC cells in vitro, which was mainly mediated by Fas/Fas ligand (FasL) and death receptor 5 (DR5)/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) pathways, but also controlled NPC tumor growth and prolonged tumor-bearing mice survival in vivo. Furthermore, γδ-T-Exos selectively targeted the radioresistant CD44+/high CSCs and induced profound cell apoptosis. The combination of γδ-T-Exos with radiotherapy overcame the radioresistance of CD44+/high NPC cells and significantly improved its therapeutic efficacy against NPC in vitro and in vivo. In addition, γδ-T-Exos promoted T-cell migration into NPC tumors by upregulating CCR5 on T cells that were chemoattracted by CCR5 ligands in the NPC tumor microenvironment. Although NPC tumor cells secreted abundant tumor growth factor beta to suppress T-cell responses, γδ-T-Exos preserved their direct antitumor activities and overcame the immunosuppressive NPC microenvironment to amplify T-cell antitumor immunity.Conclusionsγδ-T-Exos synergized with radiotherapy to control NPC by overcoming the radioresistance of NPC CSCs. Moreover, γδ-T-Exos preserved their tumor-killing and T cell-promoting activities in the immunosuppressive NPC microenvironment. This study provides a proof of concept for a novel and potent strategy by combining γδ-T-Exos with radiotherapy in the control of NPC.

Funder

Health and Medical Research Fund

Research Grants Council, University Grants Committee

Publisher

BMJ

Subject

Cancer Research,Pharmacology,Oncology,Molecular Medicine,Immunology,Immunology and Allergy

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3