Interaction between tumor cell TNFR2 and monocyte membrane-bound TNF-α triggers tumorigenic inflammation in neuroblastoma

Author:

Tomolonis Julie A,Xu XinORCID,Dholakia Kshiti HORCID,Zhang Chunchao,Guo Linjie,Courtney Amy N,Wang Siyue,Balzeau Julien,Barragán Gabriel A,Tian Gengwen,Di Pierro Erica J,Metelitsa Leonid SORCID

Abstract

BackgroundTumor progression and resistance to therapy in children with neuroblastoma (NB), a common childhood cancer, are often associated with infiltration of monocytes and macrophages that produce inflammatory cytokines. However, the mechanism by which tumor-supportive inflammation is initiated and propagated remains unknown. Here, we describe a novel protumorigenic circuit between NB cells and monocytes that is triggered and sustained by tumor necrosis factor alpha (TNF-α).MethodsWe used NB knockouts (KOs) of TNF-α andTNFRSF1AmRNA (TNFR1)/TNFRSF1BmRNA (TNFR2) and TNF-α protease inbitor (TAPI), a drug that modulates TNF-α isoform expression, to assess the role of each component in monocyte-associated protumorigenic inflammation. Additionally, we employed NB-monocyte cocultures and treated these with clinical-grade etanercept, an Fc-TNFR2 fusion protein, to neutralize signaling by both membrane-bound (m) and soluble (s)TNF-α isoforms. Further, we treated NOD/SCID/IL2Rγ(null) mice carrying subcutaneous NB/human monocyte xenografts with etanercept and evaluated the impact on tumor growth and angiogenesis. Gene set enrichment analysis (GSEA) was used to determine whether TNF-α signaling correlates with clinical outcomes in patients with NB.ResultsWe found that NB expression of TNFR2 and monocyte membrane-bound tumor necrosis factor alpha is required for monocyte activation and interleukin (IL)-6 production, while NB TNFR1 and monocyte soluble TNF-α are required for NB nuclear factor kappa B subunit 1 (NF-κB) activation. Treatment of NB-monocyte cocultures with clinical-grade etanercept completely abrogated release of IL-6, granulocyte colony-stimulating factor (G-CSF), IL-1α, and IL-1β and eliminated monocyte-induced enhancement of NB cell proliferation in vitro. Furthermore, etanercept treatment inhibited tumor growth, ablated tumor angiogenesis, and suppressed oncogenic signaling in mice with subcutaneous NB/human monocyte xenografts. Finally, GSEA revealed significant enrichment for TNF-α signaling in patients with NB that relapsed.ConclusionsWe have described a novel mechanism of tumor-promoting inflammation in NB that is strongly associated with patient outcome and could be targeted with therapy.

Funder

Robert and Janice McNair Foundation

National Institutes of Health

Cancer Prevention and Research Institute of Texas

Publisher

BMJ

Subject

Cancer Research,Pharmacology,Oncology,Molecular Medicine,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3