Use of artificial intelligence chatbots in clinical management of immune-related adverse events

Author:

Burnette HannahORCID,Pabani AliyahORCID,von Itzstein Mitchell S,Switzer BenjaminORCID,Fan Run,Ye Fei,Puzanov IgorORCID,Naidoo JarushkaORCID,Ascierto Paolo AORCID,Gerber David EORCID,Ernstoff Marc SORCID,Johnson Douglas B

Abstract

BackgroundArtificial intelligence (AI) chatbots have become a major source of general and medical information, though their accuracy and completeness are still being assessed. Their utility to answer questions surrounding immune-related adverse events (irAEs), common and potentially dangerous toxicities from cancer immunotherapy, are not well defined.MethodsWe developed 50 distinct questions with answers in available guidelines surrounding 10 irAE categories and queried two AI chatbots (ChatGPT and Bard), along with an additional 20 patient-specific scenarios. Experts in irAE management scored answers for accuracy and completion using a Likert scale ranging from 1 (least accurate/complete) to 4 (most accurate/complete). Answers across categories and across engines were compared.ResultsOverall, both engines scored highly for accuracy (mean scores for ChatGPT and Bard were 3.87 vs 3.5, p<0.01) and completeness (3.83 vs 3.46, p<0.01). Scores of 1–2 (completely or mostly inaccurate or incomplete) were particularly rare for ChatGPT (6/800 answer-ratings, 0.75%). Of the 50 questions, all eight physician raters gave ChatGPT a rating of 4 (fully accurate or complete) for 22 questions (for accuracy) and 16 questions (for completeness). In the 20 patient scenarios, the average accuracy score was 3.725 (median 4) and the average completeness was 3.61 (median 4).ConclusionsAI chatbots provided largely accurate and complete information regarding irAEs, and wildly inaccurate information (“hallucinations”) was uncommon. However, until accuracy and completeness increases further, appropriate guidelines remain the gold standard to follow

Funder

Susan and Luke Simons Directorship for Melanoma

Division of Cancer Prevention, National Cancer Institute

Van Stephenson Melanoma Fund

James C. Bradford Melanoma Fund

Publisher

BMJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3