Abstract
BackgroundWhile adoptive transfer of T-cells has been a major medical breakthrough for patients with B cell malignancies, the development of safe and effective T-cell-based immunotherapy for central nervous system (CNS) tumors, such as glioblastoma (GBM), still needs to overcome multiple challenges, including effective homing and persistence of T-cells. Based on previous observations that interleukin (IL)-17-producing T-cells can traffic to the CNS in autoimmune conditions, we evaluated CD8+ T-cells that produce IL-17 and interferon-γ (IFN-γ) (Tc17-1) cells in a preclinical GBM model.MethodsWe differentiated Pmel-1 CD8+ T-cells into Tc17-1 cells and compared their phenotypic and functional characteristics with those of IFN-γ-producing CD8+ T (Tc1) and IL-17-producing CD8+ T (Tc17) cells. We also evaluated the therapeutic efficacy, persistence, and tumor-homing of Tc17-1 cells in comparison to Tc1 cells using a mouse GL261 glioma model.ResultsIn vitro, Tc17-1 cells demonstrated profiles of both Tc1 and Tc17 cells, including production of both IFN-γ and IL-17, although Tc17-1 cells demonstrated lesser degrees of antigen-specific cytotoxic activity compared with Tc1 cells. In mice-bearing intracranial GL261-Quad tumor and treated with temozolomide, Tc1 cells, but not Tc17-1, showed a significant prolongation of survival. However, when the T-cell transfer was combined with poly-ICLC and Pmel-1 peptide vaccine, both Tc1 and Tc17-1 cells exhibited significantly prolonged survival associated with upregulation of very late activation antigen−4 on Tc17-1 cells in vivo. Glioma cells that recurred following the therapy lost the susceptibility to Pmel-1-derived cytotoxic T-cells, indicating that immuno-editing was a mechanism of the acquired resistance.ConclusionsTc17-1 cells were equally effective as Tc1 cells when combined with poly-ICLC and peptide vaccine treatment.
Funder
National Institute of Neurological Disorders and Stroke
Musella Foundation For Brain Tumor Research and Information
National Cancer Institute
Subject
Cancer Research,Pharmacology,Oncology,Molecular Medicine,Immunology,Immunology and Allergy
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献