Trojan-horse silk fibroin nanocarriers loaded with a re-call antigen to redirect immunity against cancer

Author:

Bari EliaORCID,Ferrera Francesca,Altosole Tiziana,Perteghella Sara,Mauri Pierluigi,Rossi Rossana,Passignani Giulia,Mastracci Luca,Galati Martina,Astone Giuseppina IlianaORCID,Mastrogiacomo Maddalena,Castagnola Patrizio,Fenoglio Daniela,Di Silvestre Dario,Torre Maria LuisaORCID,Filaci GilbertoORCID

Abstract

BackgroundThe current challenge for immunotherapies is to generate effective antitumor immunity. Since tumor immune escape mechanisms do not impact pre-existing and consolidated immune responses, we tested the hypothesis of redirecting a pregenerated immunity to cancer: to recall a non-tumor antigen response against the tumor, silk fibroin nanoparticles (SFNs) have been selected as ‘Trojan-horse’ carriers, promoting the antigen uptake by the tumor cells.MethodsSFNs have been loaded with either ovalbumin (OVA) or CpG oligonucleotide (CpG) as antigen or adjuvant, respectively. In vitro uptake of SFNs by tumor (B16/F10 melanoma and MB49 bladder cancer) or dendritic cells, as well as the presence of OVA-specific T cells in splenic and tumor-infiltrating lymphocytes, were assessed by cytometric analyses. Proof-of-concept of in vivo efficacy was achieved in an OVA-hyperimmune B16/F10 murine melanoma model: SFNs-OVA or SFNs-CpG were injected, separately or in association, into the subcutaneous peritumoral area. Cancer dimensions/survival time were monitored, while, at the molecular level, system biology approaches based on graph theory and experimental proteomic data were performed.ResultsSFNs were efficiently in vitro uptaken by cancer and dendritic cells. In vivo peritumor administration of SFNs-OVA redirected OVA-specific cytotoxic T cells intratumorally. Proteomics and systems biology showed that peritumoral treatment with either SFNs-OVA or SFNs-CpG dramatically modified tumor microenvironment with respect to the control (CTR), mainly involving functional modules and hubs related to angiogenesis, inflammatory mediators, immune function, T complex and serpins expression, redox homeostasis, and energetic metabolism. Both SFNs-OVA and SFNs-CpG significantly delayed melanoma growth/survival time, and their effect was additive.ConclusionsBoth SFNs-OVA and SFNs-CpG induce effective anticancer response through complementary mechanisms and show the efficacy of an innovative active immunotherapy approach based on the redirection of pre-existing immunity against cancer cells. This approach could be universally applied for solid cancer treatments if translated into the clinic using re-call antigens of childhood vaccination.

Publisher

BMJ

Subject

Cancer Research,Pharmacology,Oncology,Molecular Medicine,Immunology,Immunology and Allergy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3