Off-the-shelf Vδ1 gamma delta T cells engineered with glypican-3 (GPC-3)-specific chimeric antigen receptor (CAR) and soluble IL-15 display robust antitumor efficacy against hepatocellular carcinoma

Author:

Makkouk AmaniORCID,Yang Xue (Cher),Barca Taylor,Lucas Anthony,Turkoz Mustafa,Wong Jonathan T S,Nishimoto Kevin P,Brodey Mary M,Tabrizizad Maryam,Gundurao Smitha R Y,Bai Lu,Bhat Arun,An Zili,Abbot Stewart,Satpayev Daulet,Aftab Blake T,Herrman Marissa

Abstract

BackgroundGlypican-3 (GPC-3) is an oncofetal protein that is highly expressed in various solid tumors, but rarely expressed in healthy adult tissues and represents a rational target of particular relevance in hepatocellular carcinoma (HCC). Autologous chimeric antigen receptor (CAR) αβ T cell therapies have established significant clinical benefit in hematologic malignancies, although efficacy in solid tumors has been limited due to several challenges including T cell homing, target antigen heterogeneity, and immunosuppressive tumor microenvironments. Gamma delta (γδ) T cells are highly cytolytic effectors that can recognize and kill tumor cells through major histocompatibility complex (MHC)-independent antigens upregulated under stress. The Vδ1 subset is preferentially localized in peripheral tissue and engineering with CARs to further enhance intrinsic antitumor activity represents an attractive approach to overcome challenges for conventional T cell therapies in solid tumors. Allogeneic Vδ1 CAR T cell therapy may also overcome other hurdles faced by allogeneic αβ T cell therapy, including graft-versus-host disease (GvHD).MethodsWe developed the first example of allogeneic CAR Vδ1 T cells that have been expanded from peripheral blood mononuclear cells (PBMCs) and genetically modified to express a 4-1BB/CD3z CAR against GPC-3. The CAR construct (GPC-3.CAR/secreted interleukin-15 (sIL)-15) additionally encodes a constitutively-secreted form of IL-15, which we hypothesized could sustain proliferation and antitumor activity of intratumoral Vδ1 T cells expressing GPC-3.CAR.ResultsGPC-3.CAR/sIL-15 Vδ1 T cells expanded from PBMCs on average 20,000-fold and routinely reached >80% purity. Expanded Vδ1 T cells showed a primarily naïve-like memory phenotype with limited exhaustion marker expression and displayed robust in vitro proliferation, cytokine production, and cytotoxic activity against HCC cell lines expressing low (PLC/PRF/5) and high (HepG2) GPC-3 levels. In a subcutaneous HepG2 mouse model in immunodeficient NSG mice, GPC-3.CAR/sIL-15 Vδ1 T cells primarily accumulated and proliferated in the tumor, and a single dose efficiently controlled tumor growth without evidence of xenogeneic GvHD. Importantly, compared with GPC-3.CAR Vδ1 T cells lacking sIL-15, GPC-3.CAR/sIL-15 Vδ1 T cells displayed greater proliferation and resulted in enhanced therapeutic activity.ConclusionsExpanded Vδ1 T cells engineered with a GPC-3 CAR and sIL-15 represent a promising platform warranting further clinical evaluation as an off-the-shelf treatment of HCC and potentially other GPC-3-expressing solid tumors.

Funder

Adicet Therapeutics

Publisher

BMJ

Subject

Cancer Research,Pharmacology,Oncology,Molecular Medicine,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3