Tigilanol tiglate is an oncolytic small molecule that induces immunogenic cell death and enhances the response of both target and non-injected tumors to immune checkpoint blockade

Author:

Cullen Jason KORCID,Yap Pei-Yi,Ferguson Blake,Bruce Zara C,Koyama Motoko,Handoko Herlina,Hendrawan Kevin,Simmons Jacinta L,Brooks Kelly M,Johns Jenny,Wilson Emily S,de Souza Marjorie M A,Broit Natasa,Stewart Praphaporn,Shelley Daniel,McMahon Tracey,Ogbourne Steven M,Nguyen Tam Hong,Lim Yi Chieh,Pagani Alberto,Appendino Giovanni,Gordon Victoria A,Reddell Paul W,Boyle Glen M,Parsons Peter G

Abstract

BackgroundTigilanol tiglate (TT) is a protein kinase C (PKC)/C1 domain activator currently being developed as an intralesional agent for the treatment of various (sub)cutaneous malignancies. Previous work has shown that intratumoral (I.T.) injection of TT causes vascular disruption with concomitant tumor ablation in several preclinical models of cancer, in addition to various (sub)cutaneous tumors presenting in the veterinary clinic. TT has completed Phase I dose escalation trials, with some patients showing signs of abscopal effects. However, the exact molecular details underpinning its mechanism of action (MoA), together with its immunotherapeutic potential in oncology remain unclear.MethodsA combination of microscopy, luciferase assays, immunofluorescence, immunoblotting, subcellular fractionation, intracellular ATP assays, phagocytosis assays and mixed lymphocyte reactions were used to probe the MoA of TT in vitro. In vivo studies with TT used MM649 xenograft, CT-26 and immune checkpoint inhibitor refractory B16-F10-OVA tumor bearing mice, the latter with or without anti-programmed cell death 1 (PD-1)/anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) mAb treatment. The effect of TT at injected and non-injected tumors was also assessed.ResultsHere, we show that TT induces the death of endothelial and cancer cells at therapeutically relevant concentrations via a caspase/gasdermin E-dependent pyroptopic pathway. At therapeutic doses, our data demonstrate that TT acts as a lipotoxin, binding to and promoting mitochondrial/endoplasmic reticulum (ER) dysfunction (leading to unfolded protein responsemt/ERupregulation) with subsequent ATP depletion, organelle swelling, caspase activation, gasdermin E cleavage and induction of terminal necrosis. Consistent with binding to ER membranes, we found that TT treatment promoted activation of the integrated stress response together with the release/externalization of damage-associated molecular patterns (HMGB1, ATP, calreticulin) from cancer cells in vitro and in vivo, characteristics indicative of immunogenic cell death (ICD). Confirmation of ICD in vivo was obtained through vaccination and rechallenge experiments using CT-26 colon carcinoma tumor bearing mice. Furthermore, TT also reduced tumor volume, induced immune cell infiltration, as well as improved survival in B16-F10-OVA tumor bearing mice when combined with immune checkpoint blockade.ConclusionsThese data demonstrate that TT is an oncolytic small molecule with multiple targets and confirms that cell death induced by this compound has the potential to augment antitumor responses to immunotherapy.

Funder

QBiotics Group Ltd.

Australian National Health and Medical Research Council

NIH Tetramer Core Facility

Publisher

BMJ

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3