357 TAK-573, an anti-CD38–attenuated interferon alpha (IFNα) fusion protein (Attenukine™), has demonstrated IFNα receptor (IFNAR) pathway modulation in patients with relapsed/refractory multiple myeloma

Author:

Collins Sabrina,Joshi Adarsh,Shen Lei,Das Subhasree,Suryanarayan Kaveri,Bottino Dean,Li Cheryl,Curley Michael,Wang Dannie,Abadier Michael,Larson Ryan,Parot Xavier

Abstract

BackgroundTAK-573, a humanized, anti-CD38, IgG4, monoclonal antibody genetically fused to two attenuated IFNα2b molecules, was designed for targeted delivery of attenuated IFNα2b to CD38 expressing (CD38+) cells, utilizing a unique epitope of CD38 that does not compete with current anti-CD38 therapies. Preclinical evaluation of TAK-573 confirmed activation of type I IFN signaling in CD38+ cells inducing direct anti-proliferative effects on multiple myeloma (MM) cells and direct and indirect immune cell activation. Here we provide the preliminary analyses of the pharmacodynamic data currently available from the ongoing Ph I/II TAK-573-1501 clinical study in patients with relapsed/refractory MM (NCT03215030).MethodsPeripheral blood (PB) and bone marrow (BM) aspirates were collected from patients at pre- and post-dose time points for exploratory biomarker analyses. CD38 receptor occupancy (RO) and receptor density (RD) were determined using a 9-color flow cytometry assay. Whole transcriptome sequencing of bulk RNA was performed and analyzed to assess the type I IFN gene signature. Serum samples were analyzed using Olink’s Proximity Extension Assay Immuno-Oncology panel to measure changes in cytokine levels. Mass cytometry-based immunophenotyping was utilized to characterize changes in immune cell prevalence and activation status of cryopreserved cells.ResultsAdministration of TAK-573 resulted in a dose dependent increase in CD38 RO of PB-derived immune cells with saturation detected 4 hours after the end of infusion (EOI) at doses ≥ 0.2 mg/kg. The duration of saturation was dose dependent with doses ≥ 0.75 mg/kg saturating CD38 RO through 24 hours. All dose levels tested resulted in increases in the type I IFN gene signature at 24 hours. Consistent with CD38 being an IFN stimulated gene, TAK-573 treatment resulted in CD38 RD increases most notably on NK cells, but also on other CD38+ cells including MM cells. Circulating levels of IFN-associated cytokines were also elevated, with maximal induction 4 hours after the EOI. CD8+ T-cells in BM showed increased CD69 expression in 7 of 9 patients analyzed, 3 of whom also showed increases in both IFNγ and granzyme B positivity suggesting TAK-573 treatment results in increased BM cytolytic CD8+ T-cells, in a subset of patients.Abstract 357 Figure 1Proposed Mechanism of Action of TAK-573ConclusionsThese preliminary biomarker data indicate that TAK-573 is a pharmacologically active molecule that mediates its effect through IFNAR pathway modulation. Additional data are being collected to further refine the mechanism of action (Image 1), which will inform the recommended phase 2 dose and optimal schedule of administration for the development of TAK-573.Trial RegistrationClinicalTrials. gov: NCT03215030Ethics ApprovalThe TAK-573-1501 study is approved by WIRB-Copernicus Group, University of Nebraska Medical Center, Dana Farber Cancer Institute and Advarra IRBs.

Publisher

BMJ

Subject

Cancer Research,Pharmacology,Oncology,Molecular Medicine,Immunology,Immunology and Allergy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tumor-Homing Antibody-Cytokine Fusions for Cancer Therapy;OncoTargets and Therapy;2024-08

2. Current approaches to assessing the biological activity of immunocytokines <i>in vitro</i>;Russian Journal of Biotherapy;2022-10-30

3. Next-generation cytokines for cancer immunotherapy;Antibody Therapeutics;2021-04-01

4. Immunotherapy in multiple myeloma;Cancer Treatment and Research Communications;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3